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Foreword

The ACS Symposium Series was first published in 1974 to provide a
mechanism for publishing symposia quickly in book form. The purpose of
the series is to publish timely, comprehensive books developed from the ACS
sponsored symposia based on current scientific research. Occasionally, books are
developed from symposia sponsored by other organizations when the topic is of
keen interest to the chemistry audience.

Before agreeing to publish a book, the proposed table of contents is reviewed
for appropriate and comprehensive coverage and for interest to the audience. Some
papers may be excluded to better focus the book; others may be added to provide
comprehensiveness. When appropriate, overview or introductory chapters are
added. Drafts of chapters are peer-reviewed prior to final acceptance or rejection,
and manuscripts are prepared in camera-ready format.

As a rule, only original research papers and original review papers are
included in the volumes. Verbatim reproductions of previous published papers
are not accepted.

ACS Books Department

D
ow

nl
oa

de
d 

by
 8

9.
16

3.
35

.4
2 

on
 J

un
e 

1,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 S
ep

te
m

be
r 

30
, 2

01
1 

| d
oi

: 1
0.

10
21

/b
k-

20
11

-1
07

6.
fw

00
1

In Library Design, Search Methods, and Applications of Fragment-Based Drug Design; Bienstock, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2011. 



Preface

This volume is the result of Division of Chemical Information (CINF)
symposia organized around the popular topic of fragment-based ligand design
conducted during two Spring American Chemical Society National Meetings.
The first symposium, Library Design, Search Methods and Applications of
Fragment-Based Drug Design, was held during the 2009 Spring National ACS
meeting in Salt Lake City, Utah. The second Fragment-Based Drug Design:
Success Stories Due to Novel Computational Methods Applications, followed one
year later at the 2010 Spring National meeting in San Francisco. All presenters
at both meetings were invited to submit a written chapter summary of their
oral presentations for this volume. The sessions at both of these meetings were
extremely popular and the talks were presented to standing room only audiences.
This reflects the strong interest in the technique and application of fragment-based
drug discovery computational associated methods.

Computational, ‘rational’, or structure-based drug design methods have
been promulgated since the early 1980s evolving over time. From statistical
methods like QSAR, to shape based methods such as pharmacophore analysis,
combinatorial chemistry and high throughput virtual screening, different
computational methods have become part of the pharmaceutical company drug
discovery arsenal. As pharmaceutical research and development time and costs
have increased, there is constant commercial pressure to develop new and better
methods for the identification of novel chemical entities. The success of the
human genome project followed by protein structure initiatives, and molecular
biology pathway analysis, have brought forth a plethora of new ideas for
understanding disease pathways and new targets ripe for drug discovery. Into this
arena has stepped the methodology of fragment-based drug or ligand design. This
volume covers computational methods in fragment-based ligand design and their
application to fragment library design, library screening and fragment docking
methods and computational methodologies for fragment linking, merging and
growing. It touches on some success stories in the development of potential leads
using these fragment-based computational methods as well.

Readers who are new to the field of fragment-based ligand design as well
as veterans of computational drug discovery methods and pharmaceutical and
medical chemistry will be interested in the contents of this volume. In addition to
chemists, mathematicians and statisticians, may be interested in this volume as
well, in that they may see where novel algorithms, mathematical and statistical
techniques, can be applied to the difficulties of library searching, and for the
development of better fragment docking and scoring methods. Fragment-based
drug discovery has rapidly risen as evidenced by both the increasing number of
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industrial and academic groups with interest and publications in this area as well
as documentation of at least 13 different companies (Abbott, Astex Therapeutics,
Aventis, Burnham Instititue, Novartis, Plexxikon , Roche, SGX Pharmaceuticals,
Schering-Plough, Sunesis, Triad, Vernalis, Vertex ) with successful leads as a
result of fragment-based screening (Hajduk PJ and Greer, J Nature Reviews
Drug Discovery 6, 2007, 211-219.) The development of twenty two clinical
candidates currently in Phase I, or II clinical trials are attributed to the application
of fragment-based drug discovery methods ( Law, R J Comput Aided Mol Design
2009, 23:459-473).

I would like to thank all those who agreed to write chapters for this volume
as well as all those who participated in the two ACS symposia on this topic. Both
symposia were filled with interesting presentations and discussions. I would also
like to thank, Mr. Tim Marney, my editor at ACS publications for his assistance
with all the intricate technical details involved in producing this volume, as well
as Mr. Bob Hauserman, Senior Acquisitions Editor at ACS for noting the topical
significance of the symposium and its merit for book publication. Of course,
I always owe a debt of gratitude to my family, my husband Scott Snyder and
daughters, Julia and Shira, for the support which they provide throughout all life’s
endeavors.

Dr. Rachelle J. Bienstock

Contract Senior Research Scientist
National Institute of Environmental Health Sciences
National Institutes of Health
P.O. Box 12233, MD F0-011
Research Triangle Park, North Carolina 27709
(919)541-3397 (telephone)
biensto1@niehs.nih.gov (e-mail)
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Chapter 1

Overview: Fragment-Based Drug Design

Rachelle J. Bienstock

National Institute of Environmental Health Sciences, P.O. Box 12233,
MD F0-011, Research Triangle Park, North Carolina 27709

Fragment-based drug design has recently risen to great
prominence as a new methodology for novel lead identification.
This chapter is a general overview of computational methods for
all three phases of fragment-based ligand design: (1) Designing
and Searching Fragment Libraries, (2) Computational
Screening: Docking, and (3) Leads from Fragments: Fragment
Growing and Linking. Appendix 1 at the end of this chapter
summarizes a large number of computational methods and
software programs available with associated web sites and
references.

Introduction

Fragment-based drug discovery has emerged as a new and promising
computational methodology for efficiently increasing diversity space leading to
novel leads and therefore NCEs (new chemical entities). For many researchers in
the drug discovery area, high throughput screening (HTS) has not lived up to its
original “great expectations”. Many HTS screens failed to deliver good starting
molecules for drug discovery, as often the databases searched were composed
of nondrug like molecules or compounds which, as products of combinatorial
approaches, were difficult to transform into lead compounds. The preference for
fragment-based design over other methods, such as high throughput screening,
rests largely with the enhanced screening of a more impressive conformational
space with a smaller starting number of compounds. A large HTS screen library
contains 105-106 compounds, which still samples only a fraction of the chemical
space of small molecules (on the order of 1060- 10100 compounds), but world
require huge amounts of testing. However, combinatorial combination of 3
different fragments of a small 100 fragment database would yield 106 different
compounds and require less experimental assaying or virtual screening (1).

© 2011 American Chemical Society
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Significantly higher hit rates have been reported with fragments than with HTS.
HTS has on the order of a .1% or less successful hit rate while fragment-based
design is estimated to have typically a 3-5% hit rate (depending on the target,
hit rates are typically 8-10% for kinase targets and 2-3% for protein-protein
interactions), and because the fragments are small when docked into the binding
site, the binding site can be explored in newways not accessible to large molecules
(2). With fragments there is higher probability that a designed compound can
be synthesized because it will be based on a small simple scaffold. In short,
fragment-based design marries elements of rational design with the diversity of
random virtual screening which makes it particularly attractive.

What are fragments? Fragments are low molecular weight (MW< 250Da),
small organic molecules, that actually have low affinity (100 μM−10 mM) for
binding to the target. These fragments are then embellished, grown and linked
to create high affinity lead compounds with high selectivity. However, because
these smaller fragments are weaker binders than leads and hits identified through
HTS, the experimental methods for confirming binding must be more sensitive.
Hits from fragment screening methods usually would not be identified as potential
leads in HTS screens, and therefore provide for novel templates.

How do you design a good, diverse fragment library or database? Usually 2D
fingerprint methods (Tanimoto and/or Daylight are among some popular methods)
or statistical models based on fingerprint connectivity or pharmacophore models
are used to analyze the library database for diversity (3). A popular set of rules,
referred to as the “rule of three” has been proposed for the fragments comprising
a library : MW less than 300 Da; less than or equal to 3 H bond acceptors or
donors; ClogP less than or equal to 3; 3 or less rotatable bonds and a polar surface
area less than 60 Å2. “Drug-likeness” is an important characteristic for a fragment
library and frequently fragment databases are compared to a database of known
drug compounds, or often known drugs are dissected into fragments to develop a
fragment database. High ligand efficiency (LE> or = 3.0), defined as the binding
energy per heavy atom of the structure, is required for good leads.

Once a fragment library has been developed, a screening method must be
implemented where fragments are screened against the pharmaceutical target
of interest. Screening can be performed virtually in silico using computational
methods, or experimentally using x-ray, NMR(SAR by NMR) (4), surface
plasmon resonance (SPR, Biacore) , mass spectrometry, isothermal titration
calorimetry or protein thermal unfolding experimental methods. Soaking crystals
with small fragments can be used as a method to identify fragments as well, the
CrystaLEAD method of x-ray based fragment library screening (5).

Computational screening, using docking methodologies for fragments, is
particularly challenging due to some of the same concerns as general docking.
Problems with docking fragments include identification of the interaction or
binding site for the fragment; binding cavities can be much larger than smaller
fragments so there can be difficulties in predicting binding modes, and scoring
functions are not optimized for fragments as they are designed for larger drug-like
molecules. For fragments a metric other than RMSD must be used when docking,
such as a structural fingerprint score, feature scoring, volume clustering, or
fragment pharmacophore feature identification (6). In a review by Marcou and
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Rognan of FlexX, Glide, Gold and Surflex on 42 protein –fragment complexes
compared to x-ray data these docking algorithms could predict correct binding of
fragments 40, 70, 70 and 60% of the time respectively (7).

Difficult targets for which fragment-based screening is particularly beneficial
are those that are large and open to solvent and for targets which do not have well
developed compound libraries. Structural information, such as from x-ray or NMR
studies of the target must be available for both computational docking of fragments
and successful linking and growing of fragments to fill the target binding pocket.
As a result, many of the first successful applications of fragment-based ligand
design have been exclusively in the oncology therapeutic area with many focused
solely on kinase targets (8). Fragments are in general more rigid than molecules
and easier to dock computationally due to fewer degrees of freedom. Fragment
drug design is based on two fundamental assumptions- molecular recognition by
receptor occurs due to the presence of a fundamental core structure or fragment,
and that the properties of active fragments are additive and can be combined .

Fragment approaches can be complimentary to other lead generation methods
and are often used in conjunction with other methods. Sometimes a set of
fragments is assayed at high concentration (1mM) simultaneously with typical
fragment screening concentrations (100 μM). Also sequential methodologies
are employed following fragment-based design with a more sensitive screening
technique. Often different hit finding methods work better with different types
of targets. For example for the BACE-1 Alzheimer’s target, a high throughput
μM screening of 200,000 compounds at Evotec did not yield any leads, however
a screen of a 20,000 compound fragment library led to two dozen confirmed
good hits tested as 1mM binders using SPR (surface plasmon resonance ) testing.
In fragment-based drug design frequently the idea of a ‘privileged structure” is
employed where certain types of substructures are effective with particular types
of targets, i.e. hydrosamates with matrix metalloproteases, benzamidines with
serine proteases, aminopyrididines with kinases and ATP containing proteins (9).

Fragment-based discovery has claimed early successes with 50 perspective
small molecule leads with good ligand efficiency (10). Several companies are
developing drugs based on fragment screening which currently are in the clinic,
including Abbott, Astex, SGX Pharm, and Plexxikon. Recently, on the practical
fragments blog (http://practicalfragments.blogspot.com/) edited by Drs. Dan
Erlandson and Teddy Zartler a list of 44 companies were compiled with research
efforts in the area of fragment-based ligand design and drug discovery methods.
These are examples of some targets where fragment-based ligand design has been
successfully applied: BACE-1 (beta-secretase) for Alzheimers disease (11–13),
Urokinase (14), Phosphodiesterase 4 (15), Bcl-XL for cancer,( a protein-protein
interaction target) (16): Thrombin (17) ,Aurora kinase inhibitor (18) HSP90
inhibitor (19).

This volume covers the development of computational methods and their
application in the area of fragment-based drug discovery. There are three basic
steps involved in fragment-based computational drug design. The initial step is
the design of a good fragment library, the second step is computational docking,
ranking or screening of the fragments within the library and the third step is
computational methods for growing, linking or combining of the fragments to
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yield lead compounds. In the application of computational in silico screening
methods for fragments, many of the same issues and concerns apply as do
for computational docking of compounds in general. The targets used in
computational screening, usually structures solved by NMR or x-ray methods, are
rigid without flexibility in computational docking, and must be properly prepared
adding hydrogens, and side chains assigned proper protonation states. There is
a need for improved computational methodologies to score, rank and categorize
fragments docked to targets as well as for methodologies for growing or linking
the fragments to form complete molecules.

All three computational aspects were discussedwithin theseACS symposiums
and I will briefly outline the discussions and presentations in these areas. The
chapters within this volume discuss each of the methods presented, described by
their developers. Successful applications to kinase, GPCR, CNS targets, HSP 90
and drugs targeting protein-protein interfaces were presented at the meeting. As
we are focusing solely on computational methods in this volume, experimental
methodologies will not be discussed.

I. Designing and Searching Fragment Libraries

What comprises a good fragment library? The properties of a good fragment
library are : diversity of physicochemical properties, molecular diversity, aqueous
solubility, drug- like molecules, MW < 300 Da, good ligand efficiency (LE) (free
energy of binding a ligand averaged over each non hydrogen atom) and involve
taking lipophilicity into consideration. Several novel computational approaches to
the development of fragment libraries were reported at this ACS symposium. This
is a rapidly developing area involving both chemoinformatics and modeling tools.

One approach to the design of fragment libraries is the use of methods which
perform computational deconstruction of known drugs (20) for example the
DAIMmethod developed by Peter Kolb and Amedeo Caflish (Decomposition and
Identification of Molecules) (21) or retrosynthesis and combinatorial analysis,
such as the RECAP method (22). CoLibri is a commercial program (BioSolveIT)
that can be used for “shredding” compounds for the development of fragment
libraries for virtual screening.

The FTrees-FS software (23) performs fragment space similarity searching
and fragment assembly. (Searching web interface freely available: http://
public.zbh.uni-hamburg.de/ftrees/query.py; software available commercially from
BioSolveIT). Dr. Carsten Detering (BioSolveIT) reported on the development
and application of the FTrees-FS methodology and its advantages in using
synthetically accessible compounds from a giant virtual chemistry fragment space
library. FTrees-FS represents molecules in reduced graph representation (feature
trees) for easier and faster searching and extracts cores and identifies link atoms
,with a reagent list, to attach link atoms (24). Information concerning chirality
and 3D properties of molecules is not included, only topology information
(25)(26)(27)(28). Dr. Atipat Rojnuckarin, reported on work conducted at ArQule,
implementing a novel targeting strategy to design type IV kinase inhibitors. This
involved application of the FTrees-FS software to construct searchable fragment
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space based on the ArQule kinase inhibitor compound library to identify novel
type IV kinase inhibitors with improved ease in synthesis.

Dr. J. Robert Fischer, Zentrum für Bioinformatik, Universität Hamburg,
described LoFT, a library optimizer using Feature Trees, which is a tool for
focused combinatorial library design (29). LoFT uses a reduced topological graph
descriptor to match feature tree nodes to compare and search fragment space.
Using LoFT, a fragment space can be searched and cores and reagents selected
according to selected physicochemical properties. LoFT will then optimize and
compile a complete fragment sub library with the described properties based on
filters and descriptors in the scoring function. LoFT searches a fragment space
consisting of combinatorial libraries with a unique scaffold and uses feature tree
descriptors representing the molecules as unrooted nodes on a tree with topology,
connectivity and physicochemical properties conserved. The difference between
FTrees-FS and LoFT, is that LoFT results in sub libraries which focus on a single
core placement for a more focused library design. For validation, LoFT was
applied to several drug design scenarios. Starting with known drug molecules,
focused libraries were generated with desired property ranges.

Dr. Christof Wegscheid-Gerlach, Bayer-Schering Pharma, reported on
applications of BRICS (Breaking into Restrosynthetically interesting Chemical
Substructures), a modification of RECAP to fragment molecules according to
11 default bond rules including comprehensive modeling of ring substitution
and cleavage of sulfur groups. (BRICS fragment spaces are publicly available-
http://ww.zbh.uni-hamburg.de/BRICS) (30) BRICS is a compilation of a new
rule set for breaking up interesting chemical structures into fragments. Dr.
Wegscheid-Gerlach discussed applications of BRICS to shred the WDI and Zinc
databases and compared BRICS enhanced performance compared to RECAP. He
then presented several successful applications demonstrating novel scaffold hops
yielding Sorafenib, Fasudil and Erlotinib.

BROOD (Commerical software from Openeye http://www.eyesopen.com/
brood) searches databases of chemical fragments to identify and select fragments
with similarities to the query fragment and can perform bioiosteric replacements
to develop new leads. BROOD also generates analogs to leads by assembling
and replacing different fragments based on shape, electrostatics and molecular
properties with graphical tools for fragment editing. BROOD is accompanied
by CHOMP which serves as a molecular fragmentor and MERGE for fragment
merging. Additionally, if a crystal structure for the target protein is known,
BROOD can use information from the protein structure to eliminate fragments
which will not fit in the binding pocket and will verify protein-ligand close
contacts (31).

Dr. Ijen Chen, Vernalis, reported on the use of SeeDs (Structural Exploitation
of Experimental Drug Startpoints) a method which uses pharmacophore
fingerprints to facilitate fragment library design. The SeeDs library enumeration
creates diversity through the use of pharmacophore triangles to create a fragment
library. Fingerprints of 3 point pharmacophore triangles (acceptor, donor and
hydrophobid) are used and these pharmacophore fingerprints can screen drug
like chemical space and pick out the known preferred substructures (32, 33).
The first SeeDs library was based on MW and desired chemical features judged
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by medicinal chemistry, solutibility and tractability. This was used for in house
docking followed by a merging of fragments to create novel leads for PDK1 and
Hsp90, ATPases and kinases. Average screen hit rates of 5.6% were reported by
Dr. Chen for the SeeDs library screen on a dozen diverse targets.

Dr. Francois Delfaud (MEDIT- SA http://medit-pharma.com/
index.php?page=MEDIT-SA-Products-Drug-Design-Softwares) reported on
Med Sumo, a database searching method to identify similar binding surfaces of
macromolecules based on specific similar chemical features and properties. Med
Sumo can be used in conjunction with Med-Portions to identify small ligand
fragment structures binding to these surfaces. Med-Portions is a protein-ligand
database which includes a binding site database and protein-fragment database.
Once the Protein-Ligand has a solved structure in the PDB, it can be converted to
a protein-fragment pattern (MED-Portions). The Med-Portion database can be
mined with a library of small molecules for detection of protein pocket similarities
and alignments to identify new binding fragments. It generates fragments sharing
some surface interaction features with the query protein-ligand solved structure
surface (taken from PDB). A chapter in this volume describes this work in detail.

Dr. Valerie J. Gillet and her colleagues in the Chemoinformatics Research
Group, University of Sheffield, reported on a de novo designmethod using reaction
vectors and its application to fragment library design. In fragment library de novo
design, one of the concerns is the design of molecules that can be synthesized
easily and cost effectively. Dr. Gillet’s method for library design involves a
knowledge-based approach using reaction vectors that describe structural changes
at the reaction center within a reaction database. Dr. Gillet has written a chapter
for this volume which describes her method.

Dr. Qiong Yuan and her group at Chemical Abstracts Service described
SubScape for SciFinder (www.cas.org/products/scifindr/subscpe) and its use
for substructure searching to facilitate FBDD (fragment-based drug design).
Fragments can be analyzed and sorted and organized with associated experimental
and predicted properties with each substructure including bioactivity. Chemical
space around fragments hits can be optimized using 2D Tanimoto similarity
searches (www.cas.org/products/scifindr/subscpe).

Dr. John Badger , DeltaG Technologies in conjunction with Zenobia
Therapeutics, reported on the design and application of fragment libraries
for crystallography studies. Zenobia applied this strategy to a CNS target
(Parkinson’s disease), LRRK2, using rule-based filtering software to generate
appropriate fragments for crystallographic screening methods. Compounds were
searched for drug like core substructures (SDSearch) and then the rule of three
was implemented and additional special useful filters (i.e. blood-brain barrier
permeability) were used (34). SD search is an in house search tool which is
comprised of Zenobia’s small fragment library. The Target LRRK2- leucine
rich repeat kinase was use for “pseudo docking” the lead fragment. In this way
key binding interactions could be indentified and a first scaffold screen with a
focused library was performed followed by a second round focused around the
best hits. LeadModel3D was used for docking. The best hits were selected for
an experimental screen. Dr. Badger describes this work in detail in a chapter in
this volume.
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Drs. Ammar Abdo, and Naomie Salim, Universiti Teknologi Malaysia,
Faculty of Computer Science & Information Systems, introduced a novel
similarity-based virtual screening approach based on a Bayesian interference
network. Their network permits a combination of multiple queries and molecular
representations and weighing schemes. They feel that their method surpasses
the Tanimoto similarity approach and offers a reasonable method to assess 2D
similarity between structures. A chapter in this volume discusses this work.

Dr. Tobias Lippert, Zentrum für Bioinformatik, Universität Hamburg ,
presented ,Qsearch: a pharmacophore-based search in fragment space. QSearch
is an iterative search method using molecular evolution to allow a search of
fragment space for molecules that can fulfill the criteria of a three dimensional
pharmacophore. The search method uses an evolutionary approach where partial
solutions evolve to fit the posed query by adding, deleting or replacing fragments.
The fitness of a partial solution is calculated by its ability to obey the constraints
of the pharmacophore. An example was presented using a thrombin query
(PDB structure 1c4v) and focused fragment space as input with known thrombin
inhibitors cleaved with BRICS rules which gave 800 fragments.

Dr. J. D. MacCuish and colleagues at Mesa Analytics & Computing, Inc.,
reported on a method for shape clustering of fragment databases using both 3D
shape fingerprints (generated via Quasi-Monte Carlo integration) and 2D structure
fingerprints. Individual clusters are then analyzed with 3D shape fingerprints
incorporating substructure information, akin to substructure commonality
programs with 2D fingerprints, such as Stigmata and ChemTattoo.

Dr. V. V. Poroikov, Department for Bioinformatics, Institute of Biomedical
Chemistry of Rus. Acad. Med. Sci., reported on the PASS method that predicts
more than 3000 biological activities of a database of chemical compounds (http:/
/www.ibmc.msk.ru/PASS) (35). Prediction is based on SAR (structure activity)
analysis of the training set containing over 200,000 biologically active compounds
collected from different sources. PASS calculates the impact of each atom in a
molecule into a certain activity using MNA descriptors for each particular atom
and its immediate neighbors. These estimations could be used for identification
of fragments responsible for binding chemical compounds with a specific target,
and for further computer-aided design or generation of new "candidates" with the
required biological activity.

Drs. Y. Xu, H. Jansen, and E. Martin of the Novartis Institutes for
Biomedical Research, proposed a method when binding site information is
known, modifications can be proposed using a “cut and fit" and "fit and cut “
method. The "cut and fit" approach fragments a compound database replacing
part of a lead molecule with fragments; the fit and cut starts with a complete
molecule from a compound database, and determines whether this molecule fits.
The fragments selected are separated and merged with relevant parts of the lead
molecule. Finally, the fitting of the new modifications are confirmed with docking
method. This method has produced interesting ideas in multiple kinase projects.
As a validation of the method, a case study with the P38 ATP pocket and the
MDDR database was described.

ALTA (Anchor-Based Library Tailoring) a focused chemical library obtained
by prioritizing molecular fragments according to their docking energy is a
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technique developed by Dr. Peter Kolb and Dr. Caflish (36). An example was
presented in the talk by Dr. Kolb of the small molecule ABT-737 mapping bound
to Bcl-XL and this method is discussed further in a chapter by Dr. Kolb in this
volume.

II. Computational Screening: Docking

After designing fragment libraries and screening these libraries for hits,
the next step in the process is to computationally dock these fragments into the
targets or receptors to determine energetically favorable binding site positions
for fragments and functional groups. Once a good fragment hit is found, it
is developed into a lead by linking, growing or merging. Fragments can be
positioned in the binding cleft of protein targets and then grown, attached or
linked to fill the binding pockets optimizing steric, electrostatic, van der Waals
and hydrogen bonds. Some of the commonly used software methods available
for fragment positioning in the past are the methods GRID, MCSS, SPROUT,
MUSIC, LUDI, Sklegen (De Novo Pharmaceuticals) and Superstar (CCDC). At
the ACS symposiums presentations were given on the methods whose descriptions
follow.

The MCSS method (Multiple Copy Simultaneous Search), and the Miranker
and Karplus paper (1991), are considered by many to be the one of the first
examples of fragment-based ligand docking. The MCSS method (currently
implemented as a commercial product in Accelrys Discovery Studio software
suite) uses simultaneous molecular mechanics minimization of fragments
in the active site using CHARMm force field and the fragments are ranked
by their MCSS energy score. The MCSS method can be used to determine
fragment binding modes. Dr. Jürgen Koska and colleagues from Accelrys
and Pfizer presented a paper at this meeting docking small fragments using
MCSS minimization. Accelrys has taken the original MCSS method and
incorporated it into a fully automated Pipeline Pilot workflow and demonstrated
performance with scoring and placing of fragments with correct poses in several
protein-fragment complexes.

Drs. Dima Kozakov, and Sandor Vajda, Boston University, gave a
presentation on FTMAP, a method also based on MCSS, to find druggable sites
at protein-protein interfaces using computational fragment mapping. Developing
drugs which target protein-protein interfaces has been a recent area of significant
interest. The FTMAP method uses small molecules, fragments or groups on
the surface as probes and finds and clusters their most energetically favorable
positions. In this way, the hot spots for drug binding are identified. When proteins
interact as binding partners, although there might be a large binding surface
area, there are specific essential “hot spots” where they interact. Using a small
organic molecule probe, and an efficient FT algorithm (FTMAP) for sampling
the surface area in a grid like manner, clusters of probe consensus binding sites
can be identified. The largest consensus cluster is the most significant “hotspot”
for binding. This methodology grew out of a experimental techniques for
solving protein x-ray structures called Multiple solvent crystal structures (MSCS)
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(37), where each solved structure is solved with multiple organic solvents .
When these structures are compared, the organic solvent molecules cluster in
consensus sites that are significant functional hot spots. The idea was to develop
a computational method which could identify these functional hot spots to use in
place of experimental x-ray crystallography. The output from FTMAP is a PDB
file and the 6 lowest energy cluster representations for reach probe, the number
of nonbonded interactions between the probes and residues, and the number of
H bonds between probes and each residue. These docked organic fragments
can then serve as a starting point for fragment-based drug design. This group
has applied this method to several protein-protein interaction systems, including
interleukin-2, Bcl-xL, MDM2, HPV-11 E2, ZipA, TNF-alpha, and NEMO. The
FT map server is freely available for users http://ftmap.bu.edu (38).

Dr. Peter Kolb, (Professor Amedeo Caflish’s group, University of
Zurich), gave a presentation on the application of several of the methods
for fragment design developed by this group: DAIM, SEED, FFLD and
GANDI. The Caflisch group has designed several publicly available programs
(http://www.biochem-caflisch.uzh.ch/download/) which work together for
fragment ligand design. DAIM for decomposition of molecules into a fragment
library: SEED (Solvation Energy for Exhaustive Docking) for docking fragments
and FFLD for molecule docking based on docked fragment locations found using
SEED. After automatically decomposing molecules in a library into fragments
(DAIM) they can be docked and the docked fragments ranked (SEED). SEED
docks the fragments and the favorable poses of anchor fragments are used for
FFLD (Fast Flexible Ligand Docking) which docks the molecules designed, so
the two programs SEED and FFLD are designed to work together. The docking
program SEED docks and orients fragments into a binding pocket (39, 40),and
the binding energy estimated. The free energy of binding can be calculated for
multiple poses (LIECE (linear interaction energy with continuum electrostatic
method).

GANDI is a Genetic Algorithm-based de novo design of inhibitors and is
a program for fragment-based de novo ligand design (41). GANDI performs
automatic design of molecules within known binding site structures. It includes
a novel simultaneous energy minimization and a term forcing 3D similarity to
known inhibitors or ligands through 3D overlap. GANDI’s fragment method joins
predocked fragments with linkers, which are evaluated with a search algorithm.
Dr. Kolb has written a chapter describing applications of these methods in detail.

Dr. Zsolt Zsoldos, SimBioSys Inc, (http://www.simbiosys.ca/) gave a
presentation on the application of the fragment-based docking and linking engine
of eHiTS . Any docking method used for molecules can be used for fragments as
well. However, many of the conventional docking methods have problems with
fragments largely due to the fact that the cavities are large and the fragments small
and therefore the fragments are not sufficiently constrained for docking within the
cavity. Since eHITs works by breaking down larger ligands into small fragments
and docking them independently and then reconnecting the fragment poses it has
resulted in about a 0.5 Å RMSD small fragment pose prediction and is capable
of linking the fragments without loss of information (42–44). Dr. Zsoldos has a
chapter in this volume describing applications of eHiTS for fragment docking.
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III. Leads from Fragments: Fragment Growing and Linking

The time required to develop good leads from fragment-based screens can
be longer than other methods since fragments involve additional development
work to evolve into leads. Good methods for growing and linking fragments
can aid this process. There are several general methodologies for creating a
lead compound from fragments: (1) linking two or more fragments that bind
to different parts of the target pocket to create a lead with a chemical bridge
compound or linker (2) fragment self binding- where two or more fragments bind
or connect to each other due to chemistry without a linker (“click chemistry” is
an example) (3) simply optimizing the fragment itself alone and essentially using
the fragment itself as a lead (4) “fragment evolution” where functional groups
which bind to the target binding partner are added to increase the fragments
affinity . Commonly used computational methods for fragment linking in the past
include: Caveat, HOOK, Recore, Allegrow, Confirm, MED-SuMo LEGEND
(45) LUDI (46), GROWMOL (47) LigBuilder (48) SkelGen (49, 50) SMoG (51)
LUDI, HOOK (52),, PRO_LIGAND (53), LigBuilder, SPLICE/RACHEL (54),
CAVEAT (55, 56), CLIX and LUDI GROW, LEGEND, LORE, GEMINI. GRID
and many similar methods place fragments on grid points in the active site and
determine favorable interactions. HSITE maps hydrogen bonding regions of the
enzyme active site. Other methods for in situ fragment linking involve dynamic
combinatorial chemistry, “click chemistry”, and fragment tethering- disulfide
bond formation between cys residues in the protein and the fragment. .

GroupBuild (57) was one of the first design linking methods, described as a
“fragment-based method”. GroupBuild uses a library of organic templates and
a force field describing nonbond interactions between the ligand and enzyme to
build drug candidates that have steric and electrostatic properties that fit with the
enzyme binding site.

Dr. A. Peter Johnson and colleagues from the University of Leeds,
reported on SPROUT (58), a computational tool for growing fragments (now
available commercially through SimBiosys Inc. http://www.simbiosys.com/
sprout/index.html). SPROUT was an older program originally developed for
de novo ligand design, however it is useful for fragment linking as well. When
information is known about a fragment and its binding pose, SPROUT with
two or more fragments, is able to link them together, redocking to maintain
the original poses, also permitting some movement , limited by user selected
tolerances. SPROUT is also capable of fragment growth (evolution). SPROUT
locates binding pockets and identifies potential interaction sites (H bonding,
hydrophobic, covalent, metal, user defined) and docks molecular fragments to
target sites, and generates novel chemical structures from templates and clusters.
Using SynSPROUT, the fragments are linked through virtual synthetic chemistry.
LeadOpt has reaction information and starting material information to predict
virtual reaction and synthesis of the ligands which are known to bind and works
together with SynSPROUT.

FlexNovo is useful for large fragment fragment space database docking
(59), when the active site structure is known. FlexNovo is based on the FlexX
flexible docking algorithm with structural information for the target active site
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and pharmacophore type constraints for the fragments. The fragments in the
library are combined and linked and docked in the active site with a calculated
score (60). Recore, (http://www.zbh.uni-hamburg.de/en/research/computational-
molecular-design/projects.html), (developed by Mattias Rarey ,ZBH Hamburg, in
conjunction with Hoffmann LaRoche AG Basel Switzerland, commercial product
from BioSolveIt ) (61) is a new fragment replacement tool for fast searching of
conformations (similar to the earlier CAVEAT) however combined with a large
search domain focusing on druglike structures and including pharmacophore type
searching. The result is that Recore provides for effective scaffold hopping, 3D
core replacement and fragment linking and merging. The fragment database is
created from 3D structures with cleavage rules defined by SMARTS patterns.
While ReCore uses indexed searching, it additionally does core replacement, and
fragment linking and growing and merging.

AlleGrow, is a program which can be used in the design of cyclic scaffolds
which connect and incorporate fragments. It is an update of the earlier GrowMol
(62)(RS Bohacek). Cyclic scaffolds are fairly common in bioactive molecules.
CONFIRM (Connecting Fragments Found in Receptor Molecules) is a linking
approach with a search library for bridges for fragments and automation of linking
and docking to a target (63). A prepared library, of bridges and links, is used as
linkers to fragments and docked. CONFRIM retrieves molecular fragments based
on distances and atom types and searches a database of bridges using a substructure
pattern search. These bridges are linked to the fragments in combinatorial ways
and then proposed molecules are docked computationally.

Dr. Jacob Durant (Dr. McCammon’s group, University of San Diego) gave
a presentation on AutoGrow a fragment growing method using an initial core
and randomly adding fragments to the core scaffold which are then dynamically
docked into the protein . It is a genetic algorithm so the compounds that dock
the best become the scaffolds for the next generation in an iterative fashion (64).
It is freely available for download: http://autogrow.ucsd.edu/ . AutoGrow and
AutoClick are based on an evolutionary algorithm which starts with an initial
scaffold mutation operator and replaces it with a molecular fragment and docks
it into the target structure.

BREED (licensed from Vertex and implemented as scripts fragment_join.py
and fragment_link.py in Glide XP for fragment docking within the Schrodinger
software suite http://www.schrodinger.com/scriptcenter/#Fragments, and
also available as part of the Chemical Computing Group MOE software
suite http://www.chemcomp.com/software-sbd.htm) (65), is an automated
computational method to create new inhibitors by joining fragments from ligands
whose structures bound to the target are already known. Scaffold structures of
known ligands are superimposed so that similar bonds match and can then be split
and recombined in different combinations to generate new ligands. This method
is dependent on having structural information. It is based on and similar to the
earlier SPLICE method (66). BREED has been used successfully by Vertex to
design HIV protease inhibitors and kinase inhibitors . Methods like BREED, that
replace groups hanging off a scaffold belong to the group of methods referred
to as “scaffold hoping”. BREED detects bonds from different ligands in close
proximity in spatial alignment when the ligands are superimposed. Fragments
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can be recombined to form chimeric compounds. This is referred to as ‘fragment
shuffling” (BREED, RECORE, FLUX and MED-Hybridise are all methods in
this category). In addition to BREED, Chemical Computing Group also has tools
within the MOE software suite for scaffold replacement, fragment linking and
growing , and medchem transformations including pharmacophore features (see
http://www.chemcomp.com/journal/newscaffold.htm).

Dr. Peter Kutchukian (Harvard) gave a presentation on FOG, (Fragment
Optimized Growth Algorithm), a statistically biased growth of fragments to
produce compounds with certain features that appear with high occurrence in the
training database (67). It uses a Markov Chain approach with branching treating
each new fragment as a new transition probability and training on a database of
bioactive compounds. Fragments must have shape and energetic complementary
to the binding pockets, and synthetic feasibility so that certain types of molecular
connections are favored in growing fragments and others forbidden. The result is
the generation of molecules that have “druglikeness” properties (i.e. occupying
drug like chemical space). Dr. Kutchukian has written a chapter in this volume
describing FOG.

Dr. Dan Erlanson, (Carmot Therapeutics, Inc.), developed a technology,
Chemotype Evolution (68), which uses rapid in-situ chemistry to expand a
fragment into a diverse range of hits. Chemotype Evolution begins with a “Bait
fragment” which is modified with a group or fragment and then used for screening
so that a new “chemotype” is generated. This leads to custom library generation
in an iterative fashion. The chemotype evolution method is directed at finding a
“good fragment”, and is based on elaborating fragments found using any method:
a starting “bait” fragment can be a “privileged” pharmacophore derived from a
known inhibitor, substrate, or cofactor, or a fragment identified through a previous
screen. Through iterative application of Chemotype Evolution, the starting
fragment can be transformed into novel, varied “chemotype”, while desired
properties can be enhanced by incorporating counter screens. This techinique was
applied to the challenging design of Aurora A fragments in an adaptive kinase
pocket with DFG loop movement (69).

IV. Examples of Successful Applications of Fragment Design
Process

Dr. Valerio Berdini, Astex Therapeutics, gave a presentation on the discovery
of AT7519, a novel CDK inhibitor (which at the time of the meeting was in clinical
trials) and AT9283, using fragment-based drug design methods. Fragments used
for the CDK project were used to develop novel Aurora kinase inhibitors. This
work led to the identification of AT9283 which is also was in clinical trials at the
time of the meeting. AT7519 inhibited CDK2 with an IC50=0.047 mircomolar and
LE =0.42 (70). AT9283 (Pyrazil-4-yl Urea) is an Aurora kinase inhibitor with
IC50=0.91 mircomolar and LE =0.59 (71).

Dr. Miles Congreve, Heptares Therapeutics, discussed fragment-based
screening of stabilized G protein-coupled receptors. GPCRs are difficult targets
due to their conformational flexibility, heterogeneity and instability outside the cell
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membrane. Heptares is establishing a GPCR targeted fragment library by using
a uniquely stabilized receptor. Heptares “STAR technology” involves iteratively
introducing small mutations which stabilize and trap GPCR conformations. A
GPCR targeted fragment library is underoing development using this technique
in conjunction with biophysical mapping using Surface Plasmon Resonance
(Biacore) and TINS, target immobilized NMR screening.

Dr. Richard J. Law, Evotec, discussed a novel histamine GPCR family
antagonist designed by fragment screening and molecular modeling. Applying
a small fragment collection to the screening of three histamine receptors, the
goal was to identify subtype specific antagonists. This resulted in fragment hits
by building H3 and H4 receptor models based on similarity to known GPCR
crystal structures and optimizing them using a series of molecular dynamics
procedures. These models were used for docking procedures to reveal the
bioactive conformation of the bound ligands, with a view to structure-guided
fragment-to-lead expansion. A subsequent shape-based analogue search provided
a short list of hits from which novel submicromolar and lead-like H3 and H4
antagonists were obtained. Evotec’s substructure search and Gold docking was
based on virtual screening (using OpenEye ROCS) and NOE docking and QM
calculations.

Dr. Francois Delfaud, MEDIT SA, presented mitotic kinesin Eg5 inhibitors
generation by MEDIT’s computational MED-Portion based drug design. Eg5,
a mitotic kinesin is exclusively involved in the formation and function of the
mitotic spindle and has attracted interest as an anticancer drug target. Eg5 is
co-crystallized with several inhibitors bound to its allosteric binding pocket.
Each of these occupies a pocket formed by loop5/helix α2. Recently designed
inhibitors additionally occupy a hydrophobic pocket of this site. The goal of the
present study was to identify new fragments which fill this hydrophobic pocket
and might be interesting chemical moieties to design new inhibitors. Dr. F
Delfaud presented the application of the MEDIT SA software Med Fragmentor,
and Med-Sumo application to this problem which is dicussed in detail in a chapter
which follows.

Dr. Vicki L. Nienaber, Zenobia Therapeutics, discussed the application of
fragment-based design methods to particular issues involved with CNS drug
design-mainly dealing with the challenge presented by compounds that cross the
blood brain barrier. Their target enzyme is a LRRK2 kinase (Parkinson Disease
target) using a chemical property filter and a structural computational fragment
screen. Dr. Nienaber discussed several positive outcomes from their screens
which will be very good potential leads for new drug development in this area. A
chapter on this work in detail is included in this volume (72).

The chapters which follow in this volume discuss these specific examples
of fragment-based drug design successful application and novel computational
method development in detail. A table accompanying this chapter summarizes
computational methods available for fragment-based drug design along with
reference information. I hope this volume conveys the excitement generated by
the development and promise of fragment-based ligand design for drug discovery
and development. Hopefully the years which follow will show the fruition of this
promise with drugs in clinical development.
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Chapter 2

Validation of Reaction Vectors for de Novo
Design

Dimitar Hristozov,*,1 Michael Bodkin,1 Beining Chen,2 Hina Patel,3
and Valerie J. Gillet3

1Eli Lilly UK, Erl Wood Manor, Windlesham, Surrey GU20 6PH
2Department of Chemistry, University of Sheffield, Western Bank,

Sheffield S10 2TN
3Department of Information Studies, Regent Court, 211 Portobello St.,

University of Sheffield, Western Bank, Sheffield S1 4DP
*E-mail: hristozov_dimitar_nonlilly@lilly.com

A detailed validation of a new de novo design algorithm for
the in silico generation of synthetically accessible compounds
is presented. The algorithm is based on reaction vectors
which describe the changes that take place at a reaction centre
and which have been extracted from a knowledge-base of
reactions. In the de novo design context, novel chemical
compounds are generated by applying the reaction vectors
to new starting materials. Here the algorithm is validated by
attempting to reproduce a large number of diverse chemical
reactions. On average, 90% of the reactions investigated
(ranging from functional group interconversions to complex
rearrangements) were successfully reproduced, thus showing
the general applicability of the proposed algorithm.

Introduction

Virtual screening has become commonplace in drug discovery with
computational techniques such as similarity searching and protein-ligand docking
routinely used to predict the bioactive properties of molecules. However, these
techniques are usually applied to databases of compounds which have already
been synthesised which therefore limits the novelty that can be accessed. De
novo design, on the other hand, refers to the design of previously unknown

© 2011 American Chemical Society
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compounds to fit a set of constraints, for example, to fit into the binding site of a
target protein or to fit to a pharmacophore derived from known active compounds
(1). De novo design is appealing since it provides a way of discovering novel
compounds of therapeutic potential. However, chemical space is enormous (it has
been estimated that up to 1060 compounds could exist with <30 atoms using the
common elements C,N,O,S (2)) and the number of compounds that has already
been synthesised represents a tiny fraction of this space (for example, there are
around 48 million compounds in the CAS registry file (3)). Thus, there are vast
areas of chemistry space that are currently uncharted (4). This clearly presents
opportunities for the design of novel compounds, however, it also presents de
novo design programs with significant challenges in how to navigate through
this space to find useful compounds. The primary design constraints, such as
fit to a protein binding site, clearly provide one way of focussing the search
and, nowadays it is recognised that any compounds suggested for synthesis
should fit multiple design objectives thus further restricting the search space (5),
for example, predicted binding to a protein and acceptable ADMET properties
(Adsorption, Distribution, Metabolism, Excretion and Toxicity). However, while
multiple design constraints can be effective in directing the search towards
compounds with promising characteristics, it is still the case that many of these
theoretical compounds will not actually be synthetically accessible.

Although programs for de novo design first appeared around twenty years
ago (6, 7), a common failing of these early attempts was the lack of synthetic
knowledge that was built into the methods, so that although compounds could
be designed to fit the specified constraints, typically they were unappealing to
chemists due to a lack of synthetic tractability. Thus, a recent focus in de novo
design has been the incorporation of synthetic accessibility into the design process
and several different approaches have been developed. These include the use of
scoring methods to predict synthetic accessibility post structure generation (8–10),
the use of fragment connection probabilities obtained from databases of molecules
(11), and the use of chemical reaction transforms to restrict the structures that
are generated (12–14). Many of the latter approaches are restricted to a small
number of reactions which thus severely limits the structures that can be generated.
Furthermore, they often require the use of atom-mapping techniqueswhich involve
mapping the atoms in the product to those in the reactant in order to identify the
reaction centre and which are therefore computationally expensive to operate.

Reaction transforms have also been used retrosynthetically in Computer-
Assisted Synthesis Design (CASD) systems where a synthetic route to a target
molecule is suggested by applying retrosynthetic structural transformations
(15). The early approaches were based on manual encoding of transformations
by experts and took account of the conditions necessary for each reaction to
occur (16), however, more recent approaches have attempted to automate the
rule generation process in order to exploit reaction databases. In the automated
approaches, the core of the reaction is usually identified using atom-mapping
techniques and the core can then be extended to include the environment of
the reaction, either based on distance to the reaction centre (17) or through the
application of rules to identify relevant neighbouring atoms, as in the recent Route
Designer method (18).
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We have developed a reaction transform approach to de novo design that
is based on the automatic extraction of the reaction centre and its environment
into what are known as reaction vectors (19). The reaction vectors are then
applied in the forwards synthetic direction to suggest novel molecules that
could be made from a given starting material. The reaction vectors are based
on atom-pair descriptors and are derived through a simple subtraction of the
reactant descriptors from the product descriptors. Thus, they encode the atoms
and bonds that are removed from the reactant(s) together with the new atoms
and bonds required to form the product(s). The use of atom-pair descriptors also
allows the environment of the reaction to be encoded based on distance to the
reaction centre. Reaction vectors are very rapid to calculate since atom mapping
information is not required and they can be calculated from virtually any database
of organic reactions to form a knowledge-base for use in de novo design. Given
such a knowledge-base of reaction vectors and a starting material, then our
method selects one or more reaction vectors and applies them algorithmically to
transform the starting material into potential new product molecules. Since the
suggested transformations are based on known reactions a degree of confidence
is provided on the synthetic accessibility of the virtual products.

Our method aims to make use of the vast number of organic reactions stored
in different data sources – both commercial databases of reactions and in-house
reaction data such as that encoded in electronic laboratory notebooks. The de
novo design method has been developed using a modular approach to enable the
knowledge-base to be easily extended to include new reactions and to allow it to
be tailored to specific design scenarios, for example, to explore potential products
that could be made from a given starting material and a given set of reagents using
a specific reaction.

Here we focus on a detailed validation of the approach that is based on
reproducing known reactions that cover a wide range of different reaction types
in a wide variety of different environments. We first describe the reaction vectors
themselves and give a brief overview of the structure generation algorithm in
which a molecular transformation is applied to generate a product molecule: full
details of the algorithms have already been provided in (19).

Reaction Vectors Overview

A reaction vector is generated automatically from a reaction and encodes the
difference between the product(s) and the reactant(s) in vector form. Our work is
based on reaction vectors as described by Broughton et al. (20) who developed
them for assessing the similarity between reactions. Similar approaches to the
representation of reactions were first suggested nearly 40 years ago (21, 22) and
recently reaction vectors have been used to describe the relationships between pairs
of molecules with the aim of finding local QSAR models (23). Here we use the
reaction vectors to encode molecular transformations present in reaction databases
so that they can be applied to previously unseen molecules in order to generate
novel product molecules.
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The reaction vectors used here are a combination of atom-pairs at one and
two bonds separation, respectively. We use the atom-pair notation introduced by
Carhart et al. (24) (atom type-separation-atom type) in which separation indicates
the number of atoms in the shortest bond-by-bond path that contains both atoms
1 and 2, so that atom-pair 2 (AP2) indicates two atoms which are bonded, and
atom-pair 3 (AP3) indicates atoms at two bonds separation. The definitions of AP2
and AP3 are shown below where each atom is represented by element type (X),
number of non-hydrogen connections (h), number of π electrons (p), and number of
ring memberships (r). The bond order (1 = single bond, 2 = double bond, 3 = triple
bond and 4=aromatic bond) is also included for AP2 descriptors. The combination
of AP2 and AP3 was found to provide an effective balance between generalising
the reactions to allow novel molecules to be generated, while including sufficient
of the environment to maintain specificity.

A reactant is represented by an atom-pair vector in which the number of
occurrences of each atom-pair is recorded; where there is more than one reactant
the reactant vectors are summed. The same process is applied to the products
to generate a product vector. A reaction vector, RxnV, is then generated by
subtracting the reactant vector, RctV, from the product vector, PrdV:

Atom-pairs that are unchanged by the reaction, that is, that occur with the same
frequency in the reactant and product vectors, do not appear in the reaction vector.
Atom-pairs with negative counts indicate atom-pairs that are removed from the
reactant(s) and those with positive counts represent atom-pairs that are added to
the reactant(s) to form the product(s). The AP2 descriptors in the reaction vector
describe the bonds that are directly involved in the reaction (and the atoms incident
on the bonds) and the AP3 descriptors extend the environment of the reaction to
include atoms and bonds that are one bond away from the reaction centre. The
reaction fromwhich a reaction vector is derived is known as the parent reaction and
there is a many-to-one relationship between parent reactions and reaction vectors,
that is, several parent reactions may be represented by the same reaction vector.
The reaction vector for a Beckmann rearrangement is shown in Figure 1. TheAP2s
are shown as shaded and the AP3s are unshaded. The AP2 descriptors indicate that
there are three bonds broken (“lost”) and three bondsmade (“gained”) in the course
of the reaction. The AP3 descriptors indicate the environments in which the bonds
occur.

Structure Generation Algorithm

A structure generation algorithm has been developed which is able to generate
a virtual product molecule(s) from a starting material and an appropriate reaction
vector (i.e. one which describes bonds that are present in the starting material).
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The algorithm is described in detail in (19) and is summarised in Figures 2 and 3
using the same Beckmann rearrangement reaction shown in Figure 1.

The first step, Figure 2, involves removing bonds from the starting material
according to the negative AP2 descriptors in the reaction vector to form a starting
fragment (the AP3 descriptors are used to ensure that the bonds removed occur in
the correct environment). The positive AP2 descriptors in the reaction vector are
then used to add bonds to the fragment(s) to generate a product molecule, Figure 3.
The structure generation proceeds via a breadth-first search in which all possible
bonds are added in all possible ways. The AP3 descriptors are used to prune the
search tree by defining the wider environment of the newly created bonds.

The example shown in Figures 2 and 3 demonstrates how a reaction vector
can be applied to the reactant of the reaction from which it was derived. In this
work, we provide a comprehensive validation of the algorithm by attempting to
reproduce the known product(s) for a large set of reaction vectors and their parent
reactants. This is considered a necessary validation: if the algorithm is unable to
reproduce the reactions used to construct its knowledge base then its utility in de
novo design would be questionable. However, it should be born in mind that the
real aim of our reaction vector method is to generate novel molecules by selecting
and applying reaction vectors to previously unknown starting materials.

Figure 1. The reaction vector generated for a Beckmann rearrangement reaction.
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Figure 2. The first step in the reaction generation algorithm: removing bonds
from the reactant.

Figure 3. The second step in the reaction generation algorithm: Adding bonds to
generate a product molecule.

Reproducing Reactions from the Knowledge Base

The reaction vector approach has been validated by attempting to reproduce
the known product(s) from a reactant(s) and a reaction vector for a wide range of
different reaction types. A set of 5,695 reactions covering the 28 different reaction
types shown in Table I was extracted from the Lilly collection of commercially
available databases. Many of the reactions (44%) were initially found to be
incomplete, for example, there were missing fragments in the reactants or
products; reagents were present which were not part of the reaction itself; they
were not stoichiometrically balanced; or there was more than one product due
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to the presence of structural isomers. The reactions were therefore processed by
a reaction cleaning algorithm to ensure that the same number of carbon atoms
appeared on each side of the reaction (19). A small number of reactions were
rejected including those which could not be cleaned with our algorithm (2%)
and those consisting of more than two reactants or two products. The number of
reactions remaining for each reaction type is shown in Table I. Reaction vectors
were calculated for each reaction and stored. The validation procedure then
consisted of extracting each reaction in turn, retrieving the corresponding reaction
vector and applying it to generate a product molecule. The generated product was
then compared with the known product of the parent reaction, according to the
scheme shown in Figure 4. A time-out of 30 seconds was applied and reactions
that exceeded the limit were reported as failed.

In 75% of cases, the structure generation algorithm took less than 0.05
seconds to run, with the median run time 0.015 seconds per reaction. The results
are summarised in Table I as the number and percentage of reactions in each
class that were successfully reproduced. Figure 5 shows the success rates for
different reaction types. For 11 of the reaction classes the success rates were
100% (see Figure 6 for examples of these reaction types) and for 20 of the
classes the success rates were higher than 90% (Figure 7 shows examples from
the nine reaction classes with success rate >90% and <100%). Taken together,
these represent a range of different reaction types in which the reactions occur
in a wide variety of environments. They vary from straightforward functional
group interconversions through to more complex rearrangements. They include
reactions consisting of the conversion of a single reactant to a single product
through to reactions consisting of two reactants and two products in which both
products are successfully reproduced.

For seven of the reaction classes, the success rates were less than 90% but
higher than 60%. The worst case was encountered when trying to reproduce a
number of Fischer indole synthesis reactions. However, 40% of the reactions
could still be reproduced successfully. Sample reactions which were successfully
reproduced from these eight classes are shown in Figure 8.

The majority of the failures (470 reactions which represent ~8.3% of the
complete set) were due to reaching the time-out limit of 30 seconds. In many
cases, these are reactions which involve the formation of complex ring systems.
The algorithm reaches the time-out due to there being too many possibilities for
both the removal of bonds from the starting material and the addition of bonds to
the resulting fragment. An example of some of these cases is shown in Figure 9.
The effect of increasing the time-out was investigated by doubling the allowed
time from 30 to 60 seconds. Solutions were then generated for approximately
4.5% (21 of 470) of the previously failed reactions. However, the increase in
success rate was relatively low.

35

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n 
Ju

ne
 1

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 S

ep
te

m
be

r 
30

, 2
01

1 
| d

oi
: 1

0.
10

21
/b

k-
20

11
-1

07
6.

ch
00

2

In Library Design, Search Methods, and Applications of Fragment-Based Drug Design; Bienstock, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2011. 



Table I. Success rates in reproducing different types of organic reactions

Correctly Reproduced
Reaction Type Number of

Reactions Number Percent

Epoxide reduction 450 449 99.8

Epoxide formation 450 444 98.7

Ester to amide 172 172 100.0

Alcohol dehydration 171 169 98.8

Claisen rearrangement 61 54 88.5

Beckmann rearrangement 123 123 100.0

Friedyl Crafts acylation 113 113 100.0

Olefin metathesis 9 7 77.8

Dieckmann condensation 98 91 92.9

Nitro reduction 231 230 99.6

Alkene oxidation 272 272 100.0

Cope rearrangement 453 306 67.5

Aldol condensation 134 134 100.0

Alcohol amination 97 97 100.0

Amide reduction 51 51 100.0

Diels-Alder hetero 441 320 72.6

Ether halogenation 58 58 100.0

Ozonolysis 132 125 94.7

Claisen condensation 98 77 78.6

Carboxylic acids to aldehydes 194 194 100.0

Nitrile reduction 102 102 100.0

Diels-Alder cycloaddition 106 65 61.3

Fischer indole 230 94 40.9

Alkene halogenation 310 281 90.6

Nitrile hyrdrolysis 460 460 100.0

Olefination 455 427 93.8

Wittig-Horner 211 190 90.0

Continued on next page.
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Table I. (Continued). Success rates in reproducing different types of organic
reactions

Correctly Reproduced
Reaction Type Number of

Reactions Number Percent

Robinson annulation 13 10 76.9

Total 5,695 5,115 89.8

Figure 4. The validation procedure.

Figure 5. Cumulative reaction types count per success rate.

37

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n 
Ju

ne
 1

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 S

ep
te

m
be

r 
30

, 2
01

1 
| d

oi
: 1

0.
10

21
/b

k-
20

11
-1

07
6.

ch
00

2

In Library Design, Search Methods, and Applications of Fragment-Based Drug Design; Bienstock, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2011. 



Figure 6. Example reactions from the 11 classes with 100% success rate.

In a small number of cases (110 reactions, or ~2%, at the 30s time-out), the
algorithm terminates before reaching the time-out without generating a solution.
There are two main reasons why this may happen. First, the reconstruction tree
(illustrated in Figure 3) can often lead to duplicate states through the addition of
bonds in different orders. To speed up the algorithm an attempt is made to avoid
exploring the same state two or more times. A “state” in this context refers not
only to the structural fragment being explored, but also to the atom-pairs left for
addition and the attachment points, i.e. atoms, in the fragment. A hash function
is used to compare states in an efficient manner and transforms each state into a
single integer number, called a hash code. The hash function is designed to assign
different hash codes to different states, however, there is a small possibility of
collisions, that is, two different states being assigned the same hash code. Since
the hash codes are used to declare two states identical, only one of these states
will be examined and it could be that the correct branch in the reconstruction tree
is pruned. While the probability of hash code collisions is low, the second reason
occurs more frequently and underlines one of the limitations of the reaction vectors
approach. Remember that a reaction vector is given by the difference between
the reactant vector and the product vector (eq 3). In the majority of cases, eq
3 results in a vector of atom-pair counts which reflects the bond breaking and
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making in the underlying reaction, as desired. However, in some reactions, such
as the one exemplified in Figure 10, it is possible that the new bonds that are made
in the product are represented by the same atom-pairs that occur at the reaction
centre in the starting material. In such cases, these pairs cancel each other out
and are not represented in the reaction vector. This then leads to either incorrect
fragmentation of the starting material or insufficient atom-pairs for reconstruction
of the product. This situation has been seen in complex rearrangement reactions
and often indicates that the parent chemical reaction is either a tandem reaction (as
in the example shown in Figure 10 which involves the formation of a new cycle
in addition to epoxide reduction) or is a reaction in which several steps have been
condensed into a single reaction. Failed reactions of such complexity do not cause
undue concern for de novo design since it is likely that they would not be high on a
chemists’ list of preferred reactions. Nevertheless, we are currently investigating
extensions to the basic algorithm that would permit these reactions to be applied in
silico so that they could be included in a knowledge-base of reactions if so desired.

Figure 7. Example reactions from classes where success rate is >90% and
<100%.
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Figure 8. Examples of reactions from reaction classes with <90% success.

Figure 9. Examples of reactions which were not reproduced within the 30
seconds timeout. a) Claisen rearrangement; b) Dieckmann condensation; c)
Cope rearrangement; d) hetero Diels-Alder; e) Fischer indole synthesis.
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Figure 10. A tandem reaction in which the new bonds formed in the product
generate atom pairs already present in the starting material.

Conclusions

The reaction vector approach has been validated by reproducing a large
number of reactions in a variety of different environments. The average success
rate was around 90% and for many of the reaction types the success rate was in
excess of 90%. An analysis of the failed reactions has revealed some deficiencies
in the algorithm especially for reactions involving complex ring systems and we
are currently investigating extensions to the approach to increase the variety of
reactions that can be handled.

While the validation reported here has been based on reproducing known
reactions, the intended use of the algorithm is to apply molecular transformations
to previously unknown starting materials in order to generate novel products in
silico. We have previously introduced a desktop tool which achieves this goal and
which can be run in a variety of different modes (19): for example, to explore
possible compounds that could be made from a given lead compound in a lead
optimisation experiment. The next step in the development of the method will be
the incorporation of the structure generation algorithm into an iterative de novo
design tool that is capable of suggesting multi-step syntheses and which will be
driven by multiple design constraints.
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Chapter 3

Design and Application of Fragment Libraries
for Protein Crystallography

Computational Approaches to Compound Selection

John Badger*

DeltaG Technologies, 4360 Benhurst Ave., San Diego, CA 92122, USA
*E-mail: info1.dgtech@gmail.com

The x-ray diffraction analysis of protein crystals soaked in
libraries of fragment compounds is able to identify those small
compounds that specifically bind to critical sites on the protein.
This crystal structure data may be used in the subsequent
design of focused scaffold libraries for early lead discovery.
By applying simple computational tools to search through the
several million off-the-shelf screening compounds currently
available it is possible to implement fragment screening
methodologies in academic and small biotechnology laboratory
environments.

Background

Fragment-based screening for lead discovery (FBLD) is now an established
methodology with a proven record of success. Hajduk and Greer have reviewed
a decade of positive results from early leads to the clinic, listing 47 compounds
at significant development stages, including four compounds in clinical trials
and two compounds that were developed within two years of project inception
(1). Influential theoretical work that has encouraged protein screening with
low molecular weight compounds emphasizes the ligand efficiency, the binding
energy per non-hydrogen atom, rather than the total binding affinity for deciding
which compound hits from the initial screen are most likely to evolve into
clinical candidates (2). Specifically, relatively low affinity compounds may be
considered useful for lead development if the ligand efficiency exceeds 0.3 and
this factor favors lower molecular weight compounds for a given binding affinity.

© 2011 American Chemical Society
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In a separate development, feature analysis modeling of the probability of a
compound binding to a specific site on a protein indicates an exponentially falling
probability with increasing compound complexity (3). This result suggests that
screening libraries containing relatively small and simple compounds will yield
higher hit rates than libraries containing larger, more complex molecules although
the reduced number of interaction points will mean that the binding affinities
will often be relatively weak. As a practical matter, it is considered simpler to
manage a compound’s chemical properties through the lead development process
by growing it from a small starting compound than by attempting to modify a
compound which is already approaching its maximum tolerable size for use as an
orally deliverable drug.

The development of FBLD may have a greater practical impact than just a
re-interpretation of existing conventional high throughput screening technologies
(HTS) towards the inclusion of lower molecular weight compounds in screening
libraries. Screening with small fragment libraries that contain 100-1000’s of
compounds rather than the traditionally large HTS libraries containing ~1,000,000
compounds drastically reduces the cost and data management complexity of the
initial screen; fragment screening is a practical methodology that can be applied
in small pilot programs within academic and small biotechnology environments.

Some specific therapeutic areas may be particularly well suited to the
application of FBLD. Fragment screening appears to be an appropriate
methodology for CNS drug discovery and development because the chemical
properties that typify fragment compounds are comparable to the compound
properties required for passive transport across the blood-brain barrier (BBB).
CNS compounds capable of passive BBB transport are small molecules with
low molecular weights (<450Da and a mean value of ~350Da), that contain
limited numbers of hydrogen bonds (8-10 may be an upper limit), a relatively
low polar surface area (usually <60Å2) and an optimal solubility (logP) of ~2
(4). It has been argued that an expansion of use of HTS screening methodologies
in the pharmaceutical industry, in which the screening libraries typically contain
relatively large compounds on the edge of acceptability for BBB permeability,
has tended to decelerate the development of for drugs for CNS diseases (4).

Other rationales for performing fragment-based screening include the
identification of compound binding motifs on novel target proteins for which there
is little prior knowledge and to search for novel compound on well-established
and heavily studied targets. In some cases fragment screening has been applied
as a ‘last shot’ for the discovery of lead compounds after other approaches have
failed.

Concepts

Crystallographic Screening and Fragment Library Parameters

At first glance, x-ray crystallography would seem to be an unappealing
approach for initial target screening since it requires the availability of many
stable well-diffracting protein crystals and the data collection requirements
are both technology and resource intensive. The crystallographic screening
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experiment involves soaking previously grown protein crystals in solutions
of fragment compounds, mounting and freezing the soaked crystals and then
performing data collection on the individual crystals at a suitable x-ray source.
Despite considerable advancements in robotics for automated crystal handling
these operations unavoidably require significant quantities of pure, well-folded
protein (to grow the crystals) and careful manual manipulation to transfer and
mount individual crystals prior to data collection.

However, in the larger picture of developing a fragment-based lead discovery
project with a successful outcome, some of these issues are not as specifically
limiting to the selection of crystallography as the screening technique as they
appear. Regardless of the technique used for the initial screen, the pace and
chances of success of a FBLD project are greatly enhanced by the production of
high quality protein samples and the availability of accurate three-dimensional
structure data on protein:compound complexes. It could be argued that many
of the pre-requisites for crystallographic screening simply front-load otherwise
desirable experimental factors as technical necessities for launching a project.

X-ray crystallographic data collection no-longer requires an investment
in in-house data collection equipment but can be carried out on an ad hoc
basis at synchrotron radiation facilities. Many biotechnology companies have
abandoned support for in-house equipment and now conduct data collection
operations through outsourcing or use of their own staff at synchrotron facilities.
The methodology requires expertise (a protein crystallographer) and laboratory
resources for protein and crystal preparation but only at the ‘small science’ level
already found in many academic laboratories and biotechnology companies.

The number of compounds that may be screened crystallographically is
limited by available resources for protein and crystal production and many
laboratories might consider that the preparation and data collection on ~100
crystals to be a reasonable level of effort for the first screening attempt on a
protein. At a third generation synchrotron source equipped with instrumentation
including robotic crystal handling apparatus, the collection of 100 complete data
sets on 100 reasonably well-diffracting crystals might require ~50 real-time hours
of synchrotron beam time.

In order to increase the number of compounds that can be screened in a
single experiment it is usual to soak protein crystals in cocktails that containing
3-10 different compounds each. The compounds in each cocktail are typically
chosen so as to appear shape diverse in x-rays in order to give the best chance for
an unambiguous identification of the bound compound in the resulting electron
density map. In assigning compounds to shape diverse groups, the important fact
is that the scattering of x-rays from an atom is proportional to atomic number.
For this reason the scattering from the hydrogen atoms is usually too weak to
distinguish them above the noise level in the final image of the structure, the
scattering from all of most common elements in biological samples (C, O, N) is
rather similar, which makes them difficult to distinguish from each other, but any
heavier atoms can provide significant and distinctive markers in the compounds
that contain them. Consequently, the shape diverse mixtures used in these
experiments typically consist of differently sized cyclic compounds and mix small
and large side groups. After making use of compound sampling in mixtures, the
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feasible size for a fragment library for x-ray crystallographic screening is usually
in the range of 300-2000 individual compounds.

Obviously, a crystallographic fragment screening library is restricted to
contain far fewer compounds than is typically tested using other screening
methods. Compensation for this limited practical library size is obtained by
exploiting the sensitivity of crystallographic screening. Recalling the discussion
of molecular complexity (3) it is possible to survey a great deal of chemical
space with only ~1000 compounds provided that the screening compounds are
sufficiently small. Since crystallographic screening allows for the detection
of weakly binding compounds with binding affinities in the low millimolar
regime, the technique is applicable to the detection of very low molecular weight
fragments and hit rates from crystallographic screening campaigns with small
fragments are typically in the 1-5% range. Some published examples of fragment
libraries that have been specifically designed and successfully used for protein
crystallographic studies include the ‘Drug Fragment Set’ described in pioneering
work from the Astex group (327 compounds, mainly single cyclic groups with
most molecular weights 100-250Da, ref (5)), a library used by a group at the
University of Washington for inhibitor design studies on the Trypanosoma brucei
Nucleoside 2-Deoxyribosyltransferase (304 small compounds, in which all hits
are single core cyclic compounds, ref (5)) and the ‘Fragments of Life’ library from
deCODE Biostructures (1329 compounds with mean molecular weight 182.5Da,
ref (7)). In contrast, many of the fragment collections and subsets available from
commercial vendors contain far larger numbers of compounds and most of the
compounds they contain have molecular weights above 200Da. These fragment
collections require further filtering in order to create appropriate libraries for
crystallographic screening experiments. Exceptions are the fragment libraries
from Zenobia Therapeutics (352 compounds with mean molecular weight of
155Da) and Maybridge (1000 compounds with a mean molecular weight of
178Da)

Exploiting Information from Crystallographic Fragment Screening Data

The analysis of crystal diffraction data from a fragment screening experiment
typically involves placement of a previously solved model of the protein structure
in the crystal cell followed by automated refinement of this model against the data
and output of an electron density map for inspection. Electron density features
in the map that are not accounted for by the protein or bound water molecules
may indicate a bound fragment compound. The fragment is subsequently fitted
to match the shape of the extra density and refined to provide an accurate model
of the fragment position and conformation on the protein. Technical details for
the crystallographic structure solution processes have been given in individual
publications (for example, ref (6)) but the essential point is that this structure
information indicates that the compound is usefully bound (i.e. in a critical
functional site) and shows which atoms interact with the protein. Simple visual
inspection of the structure data for the bound fragment in the context of the
protein shows which atomic sites are available for substitution and indicates the
appropriate sizes and chemical types for substitution. This structure data also
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invites the application of more sophisticated computational docking approaches
to help design follow-up screening libraries.

The initial fragment structure data may also be used to design follow-on
libraries which need not contain only those cores identified from the hits
in the initial screen but may also contain other compounds that contain the
same binding motifs (i.e. the very small groups of ~3-5 atoms responsible for
specific interactions with the protein). The crystallographic data encourages
computational approaches to ‘scaffold hopping’ at the very earliest stage of
analysis.

Although the three-dimensional structure information allows exploitation of
structure constraints in the design of efficient follow-up libraries, information
on binding constants must be obtained using another biophysical technique,
usually on subsequent generations of more potent compounds. One key point
in the development of lead compounds, emphasized by the Astex group, is that
the binding affinity of follow-up compounds should be carefully monitored
and matched to the compound size so that a relatively high ligand efficiency is
maintained. Although structure modeling methods (see below) may be usefully
employed in the selection of follow-up compounds, a robust development process
also involves evaluating their true binding modes through the determination of
representative cocrystal structures.

Crystallographic Fragment Screening without Crystals

The experimental data from a crystallographic fragment screening
experiments may be interpreted as determining both specific substructures that
bind to the protein and their associated binding motifs. From this perspective
other structural data, including known protein structures that contain larger natural
and synthetic ligands, might also be examined in order to identify critical binding
interactions and substructures. This type of compound dissection may be used
to create ‘hypothetical fragment hits’ that inspire the design of focused fragment
or scaffold libraries that incorporate these binding interactions or substructures.
While not as reliable as true fragment hits, this approach is distinct from virtual
screening by computational docking. These hypothetical fragments are sterically
allowable and do make experimentally demonstrated interactions with the protein.

Fragment compounds are relatively unconstrained and are able to make
relatively optimal interactions with the protein. Although the position of
a fragment that is a substructure of a larger compound may be somewhat
compromised, a well chosen subgroup should still provide a significant binding
energy. Obviously, the compound dissection approach limits the novelty of
suggested screening compounds to some extent but by focusing on deriving the
key interaction motifs these libraries may still contain novel chemotypes, outside
the initial compound data.

In some cases experimental fragment screening has tended to recapitulate
and confirm information that was embedded in structure data involving larger
ligands. For example, several series of hsp90 inhibitors contain resorcinol or
adenine substructures and these compounds may be found as fragment hits
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in crystallographic fragment screens (8) as well as within previous structures
containing larger ligands.

The Rule-of-Three (Ro3) and Crystallographic Screening Libraries

Fragment libraries are typically designed so that the compounds they contain
lie within an appropriate range of chemical properties and are appropriate chemical
types for lead development. Computational filtering, and analysis tools may be
used to select compounds for these libraries from much larger collections. Further
‘expert’ input on a final fragment library design might be provided by assessing
the resulting compounds for toxicities, instabilities and synthetic utility.

General libraries of screening compounds are typically constrained so that
their chemical properties are ‘drug-like’ and Lipinski’s rule-of-five (Ro5) is often
invoked as a selection criteria. In a self-conscious echo of the Ro5, a rule-of-three
(Ro3) that is appropriate guiding the selection of smaller molecules used in
fragment screening has been proposed (9). The limits on chemical properties
expressed by the Ro3 are that: (i) the compound molecular weights should be <
300Da, (ii) the number of hydrogen bond donors should be ≤ 3, (iii) the number of
hydrogen bond acceptors should be ≤3. Additionally, (iv) the number of rotatable
bonds should be ≤3 and, (vi) the polar surface area should be ≤60Å2 . The
Ro3 is intended to impose some useful, sensible bounds on compounds within
a fragment library and, like the Ro5, builds in potential for drug development
while still at the screening phase of a project. Somewhat less clear is the extent
to which Ro3 is related to the hit rate since a recent study (8), with a library
of molecules selected from chemical types suitable for chemical development,
shows very little dependence of hit rate on the values of individual compound
properties. Commercial vendors of fragment screening libraries usually bolster
the acceptability of their collections by stating compliance with Ro3.

From the specific perspective of a fragment library design for crystallographic
screening an upper bound of molecular weight of 300Da is excessively permissive
because it allows many complex, multi-core compounds to enter the screening
collection. The arguments linking molecular complexity to library size imply
that most compounds in a small crystallographic screening library should be of
the single core type (simple decorated ring systems), with a limited number of
biaryl compounds, and this requirement implies that typical molecular weights for
appropriate compounds will be <200Da.

A subtle issue with rigid adherence to the Ro3 in fragment library designs is
that some useful drug-like cores are likely to be excluded or under-represented.
The chemical diversity of a library might be enriched by allowing some limited
exceptions. Molecules that include ring systems containing several nitrogen
atoms (for example, purines and pteridines) are potentially excluded on the
grounds that they contain excessive numbers of hydrogen bond acceptors and/or
too large a polar surface area. (A further complication, particularly in defining
some nitrogen atom types, is that different computational tools provide potentially
differing results when calculating the compound properties). A specific example
illustrating the dangers in an over-strict adherence to specific filters is the
fragment-based ligand design for hsp90, where crystallographic fragment hits
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may be obtained with resorcinol and adenine and lead series have been based on
compounds including these substructures (8). Resorcinol might be considered by
many to be too small for inclusion in a library (MW=110Da) and, depending on
the property calculation algorithm, adenine might be considered to contain too
many hydrogen bonds and contain an excessive polar surface area.

One additional consideration for libraries that are intended for use in
crystallographic screening is that quoted solubilities are calculated properties and
a relatively high solubility is required in the experimental setting. After allowing
for a dilution factor that arises from screening in cocktails and assuming that
the crystals are stable in up to ~10% DMSO it is necessary that the individual
compounds are soluble at concentrations of ~200mM in DMSO in order to
achieve concentrations of ~5mM of each compound within the protein crystal. i.e.
so that compounds with affinities that bind with affinities in the low mM range
may be detected. A solubility of ~200mM in DMSO is an order of magnitude
higher than the 10-20mM solutions often provided for screening by chemical
assay. In this author’s experience ~90% of compounds selected to comply with
the Ro3 prove to be sufficiently soluble for crystallographic work.

Implementation

Design of Project-Purposed Screening Libraries

Appropriate software tools may be used to develop screening libraries
tailored to the scientific and logistical needs of specific projects. Practical work
on fragment and scaffold library design has been carried out by this author using
the SDsearch software (with some calculations performed via OpenBabel2) but
analogous calculations could be carried out using chemical database software
that provides tools for filtering on chemical properties or by using commercially
available filtering software.

SDsearch is able to apply standard chemical property filters of the types
embodied in the Ro3 using vendor annotations or by calculation. In addition,
SDsearch is able to filter compounds according to substructures defined by
SMILES strings and according to small motifs designated by three-dimensional
distance restraints. A convenient analysis capability is that SDsearch may
accept a target list of SMILES strings and classify the compounds in a potential
library according to the matching of substructures in this list. By placing more
complex and specific definitions at the top of the list, and making the search
order dependent so that assigned compounds are not reused, problems of multiple
matches, where, for example, a naphthalene core type would also be classed
amongst benzene types are avoided. The software outputs a file of unclassified
molecules so that these can be examined and those substructures added to the list
of SMILES definitions in order to develop a complete coverage over possible
cyclic structures within the libraries.

Tabulations of compounds into clusters representing the available cyclic
substructures provide convenient information for designing focused libraries,
aimed at a specific protein target and these libraries will usually be quite small.
However, when designing a general screening library with compounds from
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multiple chemical vendors a practical issue is how best to reduce the number
of available compounds to a usable value while maintaining chemical diversity.
A possible approach is to maintain the full diversity of chemotypes but reduce
the number of compounds in the more heavily populated core groups. It seems
to this author that methods involving the elimination of the closely related
similar compounds, leaving just representative examples, are predicated on the
assumption that chemically related compounds will all produce hits, albeit with
some variations in affinity. This assumption is less likely to be true for screening
with small fragment compounds, where shifting a single side group atom has a
relatively high chance of impacting a critical binding surface. Simply refiltering
overpopulated core groups to preserve the compounds with the best chemical
properties for subsequent exploitation (for example, using a more restrictive
range of solubilities) might provide a more pragmatic solution.

Available Screening Compounds

Quite extensive collections of compounds for protein screening are currently
available from commercial vendors. The SD files supplied by just four of the
larger vendors (Chembridge, Maybridge, Enamine, Life Chemicals) list ~2
million available compounds from which to design fragment libraries. However,
the number of available compounds sharply decreases at the low molecular
weight end of the range and is relatively limited for MW < 200Da. At the time
of writing (Summer, 2009) the screening collections from these four vendors are
able to provide 1230, 1364, 1119 and 558 compounds respectively that meet the
Ro3 property criteria and have molecular weights restricted to <200Da. Almost
all of these compounds contain cyclic core structures and the sets of individual
fragment compounds in these collections are almost completely disjoint; for no
pair of vendors is there more than a 6% overlap of individual compounds. From
this perspective there are over 4000 unique and available low molecular weight
compounds from which to design a fragment library for crystallographic work.

The fragments in the the fragment screening concept are usually taken to be
fragments of known drugs or chemical substructures that might be considered
suitable components of drugs (5). A suitable fragment library should contain a
diverse and balanced collection of appropriate fragment cores. A direct approach
to analyzing and controlling the available chemical diversity in a fragment
library is to simply enumerate cyclic core types within the putative fragment
compound subsets drawn from these collections. This analysis shows where
vendor collections differ in available chemotypes and where it might be useful
to merge sets of fragment compounds obtained from multiple vendors. These
searches identify missing or under populated core types, including types which
could be expanded if the Ro3 was relaxed.

In total, there appear to be ~240 different cyclic cores covered by the four
vendors, Chembridge, Maybridge, Enamine, Life Chemicals for Ro3 compliant
subsets with MW <200Da. A cyclic core is defined here as a single or fully
conjugated ring system that is unique in terms of chemical composition and
atom hybridization state. In particular, nitrogen atoms within cyclic systems are
differentiated as to whether they lack any substituents, they are hydrogenated
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or they are connected to a larger R-group. The greatest numbers of different
cyclic cores are found in the Chembridge and Maybridge collections with each
collection covering ~2/3 of the total number of core classes and, when combined,
covering almost all cores classes. In most cases the numbers of compounds
assigned to each cyclic core type is quite small and is variably distributed across
vendors - there are many singlet classes and over 3/4 of classes contain fewer
than ten compounds. Benzene cores represent an outstandingly large class of
compounds that contains between ~1/4 and ~1/3 of all fragment compounds,
depending on vendor.

Structure-Based Exploitation of Fragment hits

A simple and rapid targeted docking approach that creates small enriched
scaffold libraries as follow-up to hits from the initial fragment screen may
prove useful. The compounds in these enriched scaffold libraries incorporate
the substructures identified from crystallographic fragment screens (or
computationally, as hypothetical fragments) provided that the compound may
achieve a docked binding mode that is compatible with the steric restraints of the
protein structure.

The input for the docking screening process is a set of compounds that has
been prefiltered to appropriate chemical properties and which contain a specific
binding substructure. The Ro3 constraints with a size limit of 275Da in order to
allow predominance of biaryl compound types has been used in some experiments
at Zenobia Therapeutics.

A pipeline process takes each compound in turn from the prefiltered
compound set and (i) generates a 3D structure, (ii) explodes the 3D structure in
torsion space to span all available conformations, (iii) superimposes each pose
into the target site by matching atoms from the binding motif onto the equivalent
set of atoms in the experimentally determined protein-ligand structure, (iv)
evaluates each pose as to whether the compound atoms clash with the surrounding
protein and scores it according to a simple contact potential to obtain the most
probable binding mode.

If all poses of a compound clash with the protein then the compound is
considered not feasible and may be rejected from the library. The modeling
approximations within this procedure are justified by the context in which it is
applied and a deliberate laxity in judging a steric clash in the pose evaluation.
Specifically, the buildup of modeling errors in restricting poses to those defined
by ideal torsion angles is mitigated by using the application on small compounds
with relatively few rotatable bonds (≤3 according to Ro3). Similarly, the rigid
docking approximation, which does not allow relaxation of small steric overlaps,
is mitigated by only rejecting compounds that make significant, multiple van der
Waals overlap with the protein.

Overall, this computationally cheap procedure aims to rapidly eliminate from
experimental consideration those compounds for which there appears to be no
feasible binding mode, facilitating a rapid experimental follow-through with the
library design.
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Example: Application to Kinase CNS Targets

A pilot study carried out at Zenobia Therapeutics on the protein kinase
GSK3ß illustrates the type of results that might be obtained using structure-based
screening with low molecular weight compounds. GSK3ß has been implicated
in several disease areas, including bipolar disorder and Alzheimer’s disease
but only one clinical trial (for Alzheimer’s disease and involving a non-ATP
competitive compound) is currently underway and most of the published high
affinity compounds may be too large to penetrate the blood-brain barrier.

Scaffold compounds that contain characteristic kinase hinge-binding motifs
observed in previously known GSK3ß protein-ligand structures (10) were selected
from a commercial screening collection containing ~450,000 compounds.
Kinases are generally favorable targets for this kind of study because several
types of compound that form two hydrogen bonds to the protein backbone in
the hinge-binding region (11) are known to derive a significant binding energy
from these interactions. The chemical properties of the selected compounds
were restricted to meet the Ro3 in a mass range chosen to select mainly
biaryl compounds (mean molecular weight was 253Da). These compounds
were additionally filtered using a predictive equation for BBB passage (12)
that incorporates chemical parameters from the Ro3 as factors. The 303
compounds obtained after applying these filters covered multiple chemotypes;
some compounds contain fragments of known ligands but other compounds only
resemble them in the sense of containing the small atomic motifs characteristic of
kinase hinge-binders. Passing these compounds through the docking procedure
described above reduced the library to 155 compounds that appeared feasible in
the sense of fitting within the binding site on GSK3ß. This reduced set was then
visually filtered and rebalanced across types of binding substructures to create
exactly one plate of 82 compounds for chemical activity assay (i.e. a 96 well
plate with two columns left empty for control compounds). Factors involved in
this final selection included compound availability, overt similarities and docking
contact potential score.

In a single-point (duplicated) assay with compound concentrations set at
20mM, 30 compounds gave >80% inhibition of GSK3ß activity. Follow-up
determinations of IC50 for four of the most potent compounds yielded one
compound with IC50 at ~1uM and three other compounds in the 6-70uM range.
While these binding affinities are relatively low when compared to hits typically
resulting from HTS screens the compounds are all small (MW 222-291Da,
corresponding to 14-15 non-hydrogen atoms), have high ligand efficiencies
(0.41-0.55) and have chemical properties well within a range applicable for orally
available CNS drugs capable of crossing the blood-brain barrier.

Comparisons of this hit rate with parallel work on other CNS kinase targets for
which the protein structures are not yet available suggest that the focused scaffold
library is enriched by a factor of 5-10 by the addition of the structure-specific
docking analysis.

Our work on other CNS kinase targets has shown that one further round of
library designs with commercially available compounds, extending to slightly
larger molecular weights, may yield potencies in the 0.1-1µM range, which may
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be sufficient to initiate cell assays. As the compound design process becomes
more informed and ideas for compound design become increasingly detailed and
specific, there are limits to extent to which commercially available compounds
meet the needs of a lead development project. At that point it may be necessary
to perform specific synthetic chemistry to further develop promising molecules.

Conclusion

Fragment screening is flexible approach for the initial discovery phase of
inhibitor design on a variety of protein targets. The approach is enabled as a low
cost screening approach by the accessibility of suitable compounds that may be
cherry-picked from commercial screening collections using simple computational
approaches.
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Chapter 4

Ligand-Based Virtual Screening Using Bayesian
Inference Network

Ammar Abdo* and Naomie Salim

Faculty of Computer Science and Information Systems,
Universiti Teknologi Malaysia, 81310 Skudai, Malaysia

*E-mail: ammar.abdo@gmail.com

The concept of molecular similarity has been widely used in
rational drug design, where functionally similar molecules are
sought by searching molecular databases for structurally similar
molecules. In conventional 2D similarity methods, uncertainty
in each stage of the similarity process is not considered and
molecular features that do not relate to a particular biological
activity carry the same weight as the important ones. In
addition, since different methods have been found to retrieve
different subsets of actives from the database, it is advisable to
use several search methods where possible. A novel similarity
searching approach using a Bayesian inference network (BIN)
is introduced, where a database is ranked in order of decreasing
probability of bioactivity. Our experiments on the MDDR
database demonstrate that the BIN provided an interesting
alternative to existing tools for ligand-based virtual screening,
especially when the actives molecules being sought have a
high degree of structural homogeneity. In such cases, the BIN
substantially outperformed the conventional Tanimoto-based
similarity searching system.

Introduction

Virtual screening is the name given to a range of computational tools for
searching chemical databases to filter out the unwanted compounds or to assess
the probability that each molecule will exhibit the same activity against a specific
biological target. These tools can be used to reduce drug discovery cost by

© 2011 American Chemical Society
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removing undesired compounds as early as possible and providing only those
compounds that have the largest a priori probabilities of activity for conventional
biological screening.

Many virtual screening approaches have been implemented for searching
chemical databases, such as, substructure searching, similarity, docking and
QSAR. These approaches can be categorized as structure-based approaches (e.g.
ligand-protein docking) which can be used when the 3D structure of a biological
target is available, and ligand-based approaches, which are applicable in the case
of the absence of such structural information. Similarity searching is an example
of a ligand-based approach. However, selecting the appropriate virtual screening
approach depends on the amount and type of data that are available before a
meaningful query can be formed. In addition, there is a substantial difference
in the computational expense of different types of virtual screening approaches;
the most notable difference is that the 3D versions require the generation of
reasonable conformers of the molecules in the database.

Similarity searching is the simplest and one of the most widely used tools for
ligand-based virtual screening. That is because this technique requires just a single
known bioactive molecule as the starting-point for a database search. Similarity
searchingmethods can be categorised according to the dimensionality ofmolecular
structure used for determining the similarity, namely 2D similarity methods and
3D similarity methods.

Over the years, many ways of measuring the structural similarity of molecules
have been introduced (1–5) with similarity measure based on the number of
substructural fragments common to a pair of structures and a simple association
coefficient (e.g. Tanimoto, Cosine) being the most common (1, 6). There
are, however, many other similarity methods in which the structural similarity
between molecules is computed. The effectiveness of any similarity method has
been found to vary greatly from one biological activity to another in a way that is
difficult to predict (2). In addition, different methods have been found to retrieve
different subsets of actives from the database, so it is advisable to use several
search methods where possible.

Many studies in information retrieval have proved that retrieval models based
on inference networks give significant improvements in retrieval performance
compared to conventional models (7–10). In the chemoinformatics field, many
techniques originate from the information retrieval field, where many similarities
have been identified between them (11). There are several analogies between
textual information retrieval and chemoinformatics (11), and these have led
to recent work by Abdo and Salim (12, 13) developing a ligand-based virtual
screening method that uses BIN and 2D fingerprints. Experiments with a subset
of the MDL Drug Data Report (MDDR) (14) database demonstrated that the
BIN provided an interesting alternative to existing similarity search approaches.
Similar results were obtained by Chen et al. (15), who used a BIN to search the
MDDR and World Of Molecular Bioactivity (WOMBAT) databases. In this work
we report the use of BIN for ligand-based virtual screening when a single and
multiple reference structures are used. In addition, the BIN has been evaluated
using an additional database rather than our previous work (12, 13).

58

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
Ju

ne
 2

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 S

ep
te

m
be

r 
30

, 2
01

1 
| d

oi
: 1

0.
10

21
/b

k-
20

11
-1

07
6.

ch
00

4

In Library Design, Search Methods, and Applications of Fragment-Based Drug Design; Bienstock, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2011. 



Similarity Inference Network Model

The basic model for similarity inference network, shown in Figure 1, consists
of two component networks: a compound network and a query network. The
compound network represents the compound collection. The compound network
is built once for a given collection and its structure does not change during query
processing. The query network consists of a single node which represents the
user’s activity-need and one or more query node representations. A query network
is built for each query and is modified during query processing as the query is
refined or additional representations are added in an attempt to better characterize
the activity-need. The compound and query networks are connected though links
between their feature nodes. Each node is binary-valued and takes on one of two
values from the set {true, false}.

Compound Network

The compound network shown in Figure 1 is a simple direct acyclic graph
(DAG) consisting of compound nodes (cj) as roots, and feature nodes (fi) as leaves.
If we letC be the set of compounds andF be the set of featureswhere the cardinality
of these sets is nc and nf respectively, then the event space represented by the
compound network is Ec=C×F. Since all propositions are binary valued, the size
of the event space is .

Each compound node represents an actual compound in the collection. A
compound node corresponds to the event that a specific compound has been
observed. Each compound node has one or more feature nodes as children. Each
feature node has one or more compound node as parents. The feature nodes
can be divided into several subsets, each corresponding to a single molecular
descriptor type that has been applied to the compound. For example, descriptors
that represent properties of whole molecules such as logP and molar reactivity,
descriptors that can be calculated from 2D graph representations of structures such
as topological indices and 2D fingerprints, and descriptors such as pharmacophore
keys that require 3D representations of structures. For simplicity, we only
consider a weighted 2D fingerprint (integer fingerprint) in which each feature is
being weighted by the frequency of its occurrence in the molecule. Therefore, the
number of the feature nodes corresponds to the length of the molecular descriptor
used to characterize the compound.

We represent the assignment of a specific feature to a compound by drawing
a directed arc to the feature node from the compound node. In this case, the
presence or absence of a link corresponds to the binary assignment of features
to compounds. Each compound node has a prior probability associated with it
that describes the probability of observing that compound. This prior probability
will generally be set to 1/(collection size) and this probability will be small for
real collections. Each feature node contains a specification of the conditional
probability associated with the node given its set of parent compound nodes. This
specification incorporates the effect of any weighting associated with the feature
node.
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Figure 1. Molecular inference network model.

Query Network

The query network is an “inverted” DAG with a single leaf that corresponds
to the event that an activity-need is met and multiple roots that correspond to the
features that express the activity-need. A set of intermediate query nodes may also
be used when multiple queries are used to express the activity-need. The roots of
the query network are query features. A single query feature node has a single
compound feature node as parent. A query feature node contains a specification of
its dependence on a single parent compound feature node. The query feature nodes
define themapping between the features used to represent the compound collection
and the features used to describe the query. In our model, the relation between
query and compound feature nodes is 1:1 and completely dependent because the
same descriptor is used to describe compounds and query.

However, the attachment of the query features nodes to the compound network
has no effect on the basic structure of the compound network. Therefore, none of
the existing links need change and none of the conditional probability specification
stored in the nodes are modified.

Weighting Scheme

A weighting scheme is used to differentiate between different features in a
molecule, based on how important they are in determining the similarity of that
molecule with another molecule. Certain molecular features can be emphasised
by associating higher weights to them when calculating similarity.
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Different types of statistical information can be extracted from computerised
representations of molecules to form the basis for a feature weighting scheme.
These are as follow:

1. Feature Frequency (ff), the number of occurrence of a particular feature
within a compound, with more frequently occurring features being given
greater weights than those that occur less frequently.

2. Inverse Compound Frequency (icf), the frequency of the feature in the
whole compound collection, with less frequently occurring features being
given a greater weight than those that occur more frequently throughout
the molecule collection.

3. Compound size (compound length), the number of the unique features
assigned to a compound, with features in a smaller compound being
assigned a greater weight than the same features in a larger compound.

The assignment of weights has been used at the National Cancer Institute
(NCI) (16). Willett and Winterman (17) found that giving more weight to features
that occur more frequently in a molecule did seem to give good results and other
weighting schemes had little significance.

Interpretation of Inference Network

The conditional probability and the Bayes rule play a central role in our
inference model. The topology of the inference network model is intended to
capture all of the significant probabilistic dependencies among the variables
represented by nodes in the entire network. Once the Bayesian network has
been created, it can be used to predict the values that certain variables can take.
Given the prior probabilities associated with the compounds and the conditional
probabilities associated with the interior nodes, we can compute the posterior
probability or belief associated with each node in the network.

The main aim of this model is to obtain the probability of biological similarity
of each compound in the collection to a given query. When the query network
is first built and attached to the compound network, we compute the belief
associated with each node in the query network. The initial value at the node
representing the activity-need is the probability that the activity-need is met
given that no specific compound in the collection has been observed to be more
similar to the query compared to the other compounds. If a single compound cj
is instantiated and evidence is attached to the network asserting cj = true with
all remaining compound nodes set to false, we can compute a new belief for
every node in the network given cj = true. In particular, we can compute the
probability that the activity-need is met given that cj has been observed in the
collection. We can now remove this evidence and observe another compound
ci, where i ≠ j. By repeating this process, we can compute the probability that
the activity-need is met given each compound in the collection and then rank
the compounds accordingly. Here, we consider only compounds in isolation for
simplicity reasons. The compound network is built once for a given collection.
Given one or more queries representing the activity-need, we then build a query
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network that attempts to characterize the dependence of the activity-need on the
collection.

Encoding the Probabilities Using Link Matrices

Once the structure of the network has been created, the information will be
propagated toward the node represented by the activity-need. The process of
propagation is known as inference. For this process, we need to estimate the
strength of the relationships represented by the network. This process involves
estimating and encoding a set of conditional probability distributions. For any of
the non-root nodes A in the network, the dependency on its set of parent nodes
{P1, P2,…,Pn} , quantified by the conditional probability P(A|P1,P2,..,Pn). The
conditional probability can be estimated by many types of weighting schemes.
This estimation can be encoded using the link matrices form. Unfortunately,
evaluation of the linkmatrix for nodeAwith n parents requiresO(2n) floating-point
operation and space for all combination of parent values. However, a family of
link matrices exists that allow this evaluation to be done efficiently, so that the
space and time complexity is reduced to O(n) (8).

More specifically, we use the weighted-sum and weighted-max canonical
link matrices to implement a variety of weighting schemes, including feature
frequency, inverse compound frequency, compound size or any combination . We
assign a weight to the child node A, which is, in essence, the maximum belief
that can be associated with that node. Moreover, weights are also assigned to its
parents, reflecting their influence on the child node. Consequently, our belief in
the node depends on the specific parents that are true. To illustrate how the link
matrix LA can implement various weighting schemes, let node A have only two
parents P1 and P2, and let w1 and w2, be the parent weights, and let wA be the child
weight A and P(P1= true) = p1 and P(P2 = true) = p2, , then the full 2 × 2n link
matrix LA is as follows:

In this representation the values of first row corresponds to the case that A =
false and the second row corresponds toA= true. We use the binary representation
of the column number to index the values of the parents, so that the highest order
bit reflects the value of the first parent, the second highest order bit the value of
the second parent and so on. The w1, w2 and wA substitute by any one of weighting
schemes. Evaluation of this link matrix form results in the following.

In case of a node A has n parents, the link matrix at Equation 1 becomes
NP-hard, therefore the derived link matrix can be evaluated using the following
closed form expressions:
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Probabilities Estimation

Given the link matrix form, we need to provide estimates that characterise
the dependence of the random variables (non-root nodes) in our model. The roots
in Figure 1 are compound nodes, with the prior probability associated with these
nodes set to 1/(collection size). Estimates are required for three different types of
nodes: features, queries and activity-need.

Feature Nodes

Compound and query feature nodes are viewed as identical under the
assumption that the user knows the set of compound features and can formulate
queries using the compound features directly by using similar molecular
descriptors. For the features involved in compound and not in query, we assign
“false” beliefs, to achieve the identical assumption. Each feature node contains a
specification of the conditional probability associated with node given its set of
parent nodes. While in principle, computation of this probability would required
O(2n) floating-point operation and space for a node with n parents, since we only
consider one compound at a time, a simple estimation formula can be used. This
estimate is given by the following equation:

where α is a constant and experiments using the inference network show that the
best value for α is 0.4, ffij is the frequency of the ith feature within jth compound,
cfi is the number of compounds containing the ith feature, clj is the number of the
unique features assigned to jth compound, avg_cl is the average compounds length
(over collection), and m is the number of compounds in the collection.

Query Nodes

We need to encode the dependency of each query formulation upon the feature
nodes. To encode this probability, we use a weighted-sum link matrix form, as
described in Equation 3. By using a weighted-sum link matrix, we assign a weight
to each of the n parents of the query node, reflecting their influence on the query
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node. The parents with larger weights have more influence on our belief bel(q).
The belief in the query node k is then determined by the parents that are true and
evaluated as

where cjk is the set of feature in common between jth compound and kth query, clj
is the number of the unique features assigned to jth compound, ffik is the feature
frequency of the ith feature within kth query, maxffk is the maximum frequency of
occurrence in kth query and pi is the estimated probability at the ith feature node (pi
computed at Equation 5).

Activity-Need Node

To encode this probability, we use weighted-sum or weighted-max canonical
link matrices form, as described in Equations 3 and 4. By using these link
matrices forms, we assigned a weight to each of the n parents of the activity-need
node, reflecting their influence on the activity-need node. The parents with larger
weights have more influence on our belief bel(A). The belief in the activity-need
node is then determined by the parents that are involved and evaluated as

where cjk is the number of common features between jth compound and kth query,
qlk is the number of the unique features assigned to kth query, pjk is the estimated
probability that the kth query is met by the jth compound and r is the number of
queries. In case of a single query used, the belief in the activity-need node then
coincides with the belief in the query node.

Experimental
Our experiments have used the most popular chemoinformatics database: the

MDDR (14). The database was first filtered using a set of filters from the Pipeline
Pilot software (18) to remove duplicate compounds and those that could not
be processed. The remaining database comprised 58693 compounds, including
6804 compounds belonging to 12 different activity classes. Details of these
classes are given in Table I, which also contains numeric estimates of the level

64

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
Ju

ne
 2

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 S

ep
te

m
be

r 
30

, 2
01

1 
| d

oi
: 1

0.
10

21
/b

k-
20

11
-1

07
6.

ch
00

4

In Library Design, Search Methods, and Applications of Fragment-Based Drug Design; Bienstock, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2011. 



of structural diversity in each activity class, this being based on the pair-wise
Tanimoto similarities calculated using the ECFP_6 fingerprints from SciTegic
(19), where it can be seen that the renin inhibitors are the most homogenous and
the cyclooxygenase are the most heterogeneous.

Table I. MDDR structure activity classes

Code Activity class Actives mean SD

5H3 5HT3 antagonists 213 0.8537 0.008

5HA 5HT1A agonists 116 0.8496 0.007

D2A D2 antagonists 143 0.8526 0.005

Ren Renin inhibitors 993 0.7188 0.002

Ang Angiontensin II AT1 antagonists 1367 0.7762 0.002

Thr Thrombin inhibitors 885 0.8283 0.002

SPA Substance P antagonists 264 0.8284 0.006

HIV HIV-1 protease inhibitors 715 0.8048 0.004

Cyc Cyclooxygenase inhibitors 162 0.8717 0.006

Kin Tyrosin protein kinase inhibitors 453 0.8699 0.006

PAF PAF antagonists 716 0.8669 0.004

HMG HMG-CoA reductase inhibitors 777 0.8230 0.002

In order to make the evaluation of an approach independent of the
characteristics of the specific fingerprint design, we included six different
fingerprints in our experiments: atom type extended-connectivity counts
(ECFC), functional class extended-connectivity counts (FCFC), atom type atom
environment counts (EEFC), functional class atom environment counts (FEFC),
atom type hashed atom environment counts (EHFC), and functional class hashed
atom environment counts (FHFC) from SciTegic (19). The experiments here used
the ECFC_4, FCFC_4, EEFC_4, FEFC_4, EHFC_4, and FHFC_4, where the
numeric code denotes the diameter in bonds up to which features are generated.
To make the computational task manageable, we employed a diameter size of
four for all fingerprint types in this study, and the fingerprint types are folded to
a fixed length of 1024 bits. All the fingerprint types above were generated by
Pipeline Pilot software (18) from SciTegic.

To provide a basis of comparison for the BIN searches, analogous experiments
were carried out using a conventional, Tanimoto-based similarity searching system
(TAN). This system is a well established method in ligand-based virtual screening
and therefore used as reference. In addition, the BIN method is compared to
a popular technique for similarity searching using multiple bioactive reference
structures, the data fusion (DF) (20) approach in combination with Tanimoto-
based similarity searching system (21). Our application of DF involves fusing the
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similarity scores yield from similarity searches of a chemical database against each
member of the reference set. In particular, the MAX and SUM fusion rules, for the
maximum of the similarity scores and the sum of the similarity scores respectively,
were used.

For each of the 12 activity classes, 10 different sets of 10 active compounds
were randomly selected as the reference sets. Each searching method was repeated
10 times using 10 different reference sets for each type of fingerprint. For each
combination of a fingerprint and activity class, the different methods were applied
and the average percentage of the active structures at the top 1% and the top 5% of
the ranking list were generated. Finally, the results presented in this study are the
mean and standard deviations for these recall values, averaged over each set of the
10 searches. TAN and DF methods were applied in combination with non-binary
Tanimoto coefficient to compute the similarity scores.

Results and Discussion

Our experiments were carried out in two different ways. First, the BIN and
TAN methods conducts an individual similarity search for each active reference
structure and then the results averaged over all of them. Second, the BIN and DF
methods conduct an individual similarity search for each active reference structure,
and then combine the resulting similarity scores using weighted-sum (WSUM),
weighted-max (WMAX) link matrices for BIN and MAX, SUM fusion rules for
DF method.

Table II presents the results of the BIN and TAN methods when searches
were carried out with a single reference structure. We can readily see the recall
rates are different for the 12 activity classes. Inspection on the results reported in
Table II show that BIN obtained average recall rates of 10-79%, higher than the
TAN method, with 22% performance improvement in overall average recall rates
compared to the TANmethod. In only a single instance, for activity class Cyc, BIN
produced a slightly lower recall rates (23.72%) than the TAN approach (24.44%).
It is noticeable that this inferior result is associated with the most diverse datasets.
Results reported in Table II shows that, recall rates for classes Kin, Cyc, and PFA
were consistently lower than other classes, which could at least in part be attributed
to the high diversity of Kin, Cyc, and PAF classes, whereas recall rates for classes
Ren and Ang were consistently higher than other classes, which could at least in
part be attributed to the low diversity of Ren and Ang classes.

The results in Table III suggest that WMAX and MAX, on average, produced
the highest recall rates followed by WSUM and SUM, respectively. Investigation
on the results reported in Table III reveal that the BIN approach is superior to
the DF approach. The BIN (WMAX and WSUM) obtained the highest recall
rates for all activity classes than DF approach, with 36% and 52% performance
improvement in overall average recall rate compared to the MAX and SUM,
respectively. The superiority of combined scores resulting from BIN over the DF
approach is ascribed to the fact that, the BIN approach uses weights expressing
the importance of each score. In addition, an individual similarity search for
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each active reference structure, which generated the ranked lists, is enriched with
active structures more than those generated by the TAN approach.

Results reported in Tables II-III reveals the benefit that can be achieved using
multiple reference structures. The values under the mean columns in Tables II-III
show that the expected recall rate using a single reference structure are much lower
than the results reported in Table III for the BIN and DF approaches, with 79%,
78%, 61% and 43% performance improvement in the overall average recall rate
when multiple reference structures used rather than just one reference structure.

The results presented here included only the top 5% experiments using
EHFC_4 fingerprints that because the conclusions that can be drawn from these
results are the same as those that can be drawn from the top 1% experiments
and other fingerprint types. Similar comments apply to experiments in which we
evaluated the various approaches in terms of the recall of active Murcko scaffolds
(22), rather than of active molecules.

Table II. Comparison of the average of active compounds recalled over the
top 5% using BIN and TAN approaches

BIN TAN

Activity mean SD mean SD

5H3 32.73 3.26 29.43 4.15

5HA 35.28 2.95 27.04 3.2

D2A 26.05 1.62 23.35 2.33

Ren 85.89 5.85 78.07 9.85

Ang 69.91 3.78 59.44 4.74

Thr 34.60 4.61 19.38 3.67

SPA 40.46 5.08 35.67 5.09

HIV 43.70 5.25 39.38 3.95

Cyc 23.72 2.63 24.44 1.7

Kin 24.96 6.40 22.06 5.45

PAF 19.50 2.05 14.58 1.56

HMG 57.70 2.49 33.32 3.12

Average 41.21 3.83 33.85 4.07
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Table III. Comparison of the average percentage of actives compounds
recalled over the top 5% using BIN and DF approaches

WMAX WSUM MAX SUM

Activity mean SD mean SD mean SD mean SD

5H3 70.35 5.18 69.36 4.50 40.20 5.34 42.42 13.07

5HA 76.60 7.58 77.55 9.45 57.83 8.03 40.75 10.37

D2A 66.32 6.22 64.81 6.25 49.17 7.13 39.70 6.12

Ren 95.62 1.21 95.73 0.68 91.24 4.20 92.33 2.35

Ang 94.70 2.25 96.52 0.67 75.06 3.87 76.01 2.95

Thr 66.50 8.59 66.32 8.26 26.99 8.60 31.58 7.17

SPA 79.76 6.01 77.95 7.90 72.88 7.05 57.72 11.36

HIV 75.15 4.81 73.80 3.44 59.28 4.31 54.04 5.13

Cyc 63.75 8.19 64.21 8.48 57.24 9.57 39.01 8.66

Kin 50.95 8.22 51.58 8.77 35.37 8.42 33.32 10.11

PAF 55.84 8.84 52.42 7.84 33.65 7.84 19.46 4.75

HMG 91.74 1.56 91.15 2.75 55.54 6.88 54.75 7.42

Average 73.94 5.72 73.45 5.75 54.54 6.77 48.42 7.46

Conclusion

One of the disadvantages in simple similarity searching is that molecular
features or descriptors that are not related to the biological activity carry the same
weights as the important ones. To overcome this limitation, we introduced a novel
approach based on Bayesian inference network where the features carry different
statistical weights. Features that are statistically less relevant are de-prioritized.
In addition, we investigated similarity searching based on a Bayesian inference
network and conventional similarity searching approaches when multiple
reference structures are available. The Bayesian inference network approach was
found to outperform the conventional similarity searching approaches. Our results
suggest that, the Bayesian inference network provides an interesting alternative
to existing tools for ligand-based virtual screening.
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Chapter 5

A Computational Fragment Approach by
Mining the Protein Data Bank: Library Design

and Bioisosterism

F.Moriaud,*,1,2 S. A. Adcock,1,2A.Vorotyntsev,2O.Doppelt-Azeroual,2
S. B. Richard,2 and F. Delfaud1,2

1Felix Concordia SARL, 400 av Roumanille Bât. 7,
BP 309 06906 Sophia-Antipolis, France

2MEDIT SA, 2 rue du Belvedere, 91120 Palaiseau, France
*E-mail: fmoriaud@medit.fr

Through database mining of the Protein Data Bank (PDB),
protein pocket similarities and 3D structural alignments
of similar pockets can be performed. These 3D structural
alignments can serve as guides in drug design. The commercial
MED-SuMo software performs superimposition of PDB
ligands based on the ligand-binding corresponding pockets’
and subpockets’ 3D similarities. Subpockets are occupied by
fragment-like molecules or portion of ligands. The mining of
such fragments’ interaction with the macromolecule surface
serves as both a target-based and fragment-based computational
method for PDBmining. In this work, we describe two practical
applications: (1) a ligand-based drug design technique for
bioisosteric replacement and compound library design and
(2) a computational fragment-based drug design protocol for
target-based drug design scenarios : ligand design, ligand
decoration and compound library design. The bioisosteric
approach is based on a database of bioisosteric replacement
rules which were dervived from the entire PDB and are
applicable to any ligand with a known or predicted 3D bound
conformation. We present two successful applications: the
design of alkenyldiarylmethane ligands for HIV-RT, and
the design of a small compound library for HSP90. A case
study using the computational Fragment-Based Drug Design

© 2011 American Chemical Society
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approach, was applied to the design of compounds for three
types of protein target: Protein kinase, GPCR and kinesin.

1. Introduction

There are more than 72,000 macromolecular structures in the Protein Data
Bank (1). The PDB has been growing at a rate of 13% per year over the last 5
years. This is an invaluable source of information available for understanding
macromolecule interactions and ligand binding. Comparison of a protein pocket
to all PDB pockets, as defined by ligand occupancy, enables pocket mining, pocket
detection, functional annotation, drug repurposing and off-target identification.
Some methods simply detect pocket similarities and others go a step beyond
by generating 3D alignments of similar pockets (2–10). Those 3D alignment
methods enable additional applications such as pocket characterization and drug
design. While the original SuMo heuristic (3) was designed to detect convergent
and divergent biochemical functional evolution between protein families, the
commercial MED-SuMo software allows superimposition of any PDB ligands
based on their corresponding pockets’ 3D similarities and in addition to their
subpockets’ 3D similarities. In this study, we describe two practical applications:
(1) a ligand-based drug design technique for bioisosteric replacement and
compound library design and (2) a computational fragment-based drug design
protocol for target-based drug design scenarios: ligand design, ligand decoration
and compound library design (3, 11–14).

Bioisosteres are compounds that, despite being structurally different, share
similar physical properties and chemical interactions and therefore exhibit similar
biological activities. This concept is relevant during the lead optimization stage of
a drug-design programme, as bioisosteres can offer improved physical, chemical
or toxicological properties while maintaining the desired biological activity. They
are also of increasing value as alternative structures to overcome synthetic or
patent-related obstacles to drug commercialization. Bioisosteric replacement is the
process through which bioisteres are created by the replacement of substructures
within the reference compound.

The bioisosteric approach is based on an automatically generated database
of bioisosteric replacement rules derived from the entire PDB and applicable
to any ligand in a 3D conformation. In the first application, we used the ester/
benzo[d]isoxazole bioisosteric replacement observed in the Heat Shock Protein
family and applied it to alkenyldiarylmethane ligands of HIV-RT. In the second
application, we generated small compound libraries for HSP90.

The computational Fragment-Based Drug Design protocol (15, 16) was used
to design compounds that would bind to different targets: Protein kinase, GPCR
and kinesin. In contrast to the bioisosteric approach, this is a target-based drug
design technique which requires the target structure as input. This input structure
can be any macromolecular model containing protein and/or oligonucleotides. A
structure with a bound ligand is not required.
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2. Target-Based Alignment of PDB Ligands

Methods based on 3D comparison of binding sites enable the 3D alignment
of the protein environments (2–10) and as a consequence, the 3D alignment of co-
crystallized ligands in those pockets. This is referred to as target-based alignment
of PDB ligands. There are 13,503 co-crystallized ligands with amino acid chains
in the PDB (from X-ray diffraction data) having a molecular weight between 300
and 550Da (1) (April 19th 2011). Only one occurrence of each PDB code&Ligand
identifier is considered. Roughly half of them, 6,634 ligands, are co-crystallized in
structures with a resolution of 2.0 Å or better. This resolution might be considered
as a safe cut-off to exploit the 3D atomic positions of ligand atoms.

The description of the protein has a strong effect on the results and on the
predicted similarity. There are two main classes of methods: those which are atom
based (5, 7) and in some cases including alpha carbon only (10), and those which
use a pharmacophoric-like description (2–4). MED-SuMo belongs to the later
class (11–14): the amino acids and nucleotides are transcribed using a dictionary
of Surface Chemical Features (SCFs) capable of describing any macromolecule,
whether protein, DNA, RNA or any combination of these. The SCFs can be
directionless objects, vectors or planes. This customizable dictionary of features
allows conversion of the amino acids and nucleotides into a set of user-defined
SCFs. The SCFs are capable of encoding the alpha carbon and/or the sidechains,
including non-exhaustively, hydrophobic, aromatic, formal charges and H-bond
SCFs.

Once the ligands are aligned in 3D space, they can be combined by
hybridization (15, 17) or used as a source for matching fragments to act as
bioisosteric replacement pairs (18). Relevant superposition of PDB ligands are
obtained when very similar binding sites are superposed correctly. When the
whole PDB is mined, the incorrect superposition should be discarded (described
hereafter).

3. Ligand-Based Drug Design: Exploring Bioisosteric
Replacements Derived from PDB Data

3.1. Introduction

As previously reviewed (19, 20), the replacement of a given fragment in a
3D molecule may be used for bioisosteric replacement and scaffold hopping.
The first case assumes that the fragment is exchanged with another fragment
with similar potential interactions. Such interactions might include, for example,
hydrophobicity, stacking, H-bonds and formal charges. Rather strict isosteres
are preferred in this application. The second case involves the replacement of
the entire scaffold while retaining the substituents optimized for the interaction
with the target. Scaffolds with the same attachment point can be decorated with
the same chemical substituents and are considered initially to be non-specific to
the target and can therefore be generated de novo. Changing the scaffold (i.e.
increased rigidity) can modify the binding affinity, improve drug-like properties,
and increase the binding affinity because it may lose some conformational entropy
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upon binding. Therefore changing any significant fragment of a compound can
significantly change its affinity. This is the reason why substitution rules should
be established with an effort to maintain the original information in the protein
environment responsible for the ligand binding. A third application mentioned in
this review is one of compound library design. Here efficient navigation within
the virtual substituent and functional group space is required, and is achieved by
exhaustive bioisostere enumeration.

These three applications can be carried out using the FC-Bioisostere software
described below. The replacements are defined from 3D aligned PDB ligands
(using their target-bound 3D structure alignment) and are applicable to any
original ligand. In other words, we asume that a bioisosteric pair can be defined
within a protein family and applied to another protein family. We refer to this as
“Bioisosteric rules hopping”. This is more efficient for exploring the chemical
space around an original ligand than using only the rules that would have been
obtained by superimposing ligands from the same protein family. For compound
library design for a given target, all the original ligands bound to that specific
target, or a subset of those, are used to generate bioisosteres. The resulting
bioisosteres are collated into a single file and constitute a compound library now
specific for this target. Examples are provided in the results section for Heat
Shock Protein 90 (HSP90).

In order to build the bioisostere database, the PDB was broadly mined using
a diverse set of selected pocket queries. For each query, on the order of tens
of ligands are superimposed. This approach provides the user with a diverse
set of fragments of various sizes that could be replaced. The simplest case of
replacement is changing a substituent with a single attachment point. This can
be achieved using a database of unique replacements with a single optimized
superposition. In our case, a pair of substituents can be superimposed with
diverse conformations, as observed in the PDB, leading to what appears to be
duplicates. Despite being duplicate chemicals, they are considered unique due to
their different bound geometries. In fact, this approach provides suggestions of
replacement independently of the number of attachment points and can therefore
solve more complicated cases than a simple substituent replacement. The
assumption of fragment replacement is not based on attachment points matching
but rather on the fact that these two fragments were found to be overlaid in two
very similar superposed binding sites. A limitation of this method is that the
binding affinity of the ligand is not known for the complexes or, even if known,
is not exploited here, as the contribution of any specific fragment’s contribution
to the global ligand binding affinity is not known. Therefore, the relative affinity
of the two fragments is not known experimentally and is at best evaluated as not
preventing binding.

3.2. Method

The method described here corresponds to the recent R&D developments of
Felix Concordia SARL and implemented in the FC-Bioisostere software, where
most of the functionalities are implemented.
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Bioisostere Database (DB)

The DBGeneration is a multi-step process, and the earlier steps are performed
with the MED-SuMo technology. In essence, the early steps simply create a list
of ligand molecules that are each overlaid with a series of other ligand molecules
that exhibit the same binding modes. The MED-SuMo algorithm finds and aligns
molecules with similar binding modes onto the input ligand(s) by pocket mining
over the whole PDB. The PDB ligands are standardized according to definitions in
the Ligand Expo dictionary (21) Using this data set, the DB generation tool locates
potential bioisosteric replacements and populates the DB with this new data.

Our overall protocol closely resembles that of Kennewell et al. (18), but the
individual steps are significantly different. The aligned set of PDB ligands are
selected from very similar 3D binding pockets, identified using the MED-SuMo
protocol, rather than only using amino acid sequence similarity as the selection
criteria. Protein structures with the same sequence are very likely to have an
identical pocket (conformation may differ) and therefore ligands are superimposed
in the same environment. Each query ligand protein environment is compared,
using MED-SuMo, against a subset of the PDB binding sites containing ligands
with an HAC between 15 and 65 (filter available in the MED-SuMo server) that
were considered of interest in this work. This subset contains only those ligands
manually selected as likely being of synthetic chemistry origin (not endogenous).
We did that selection to keep the database small and relevant for medicinal
chemistry projects.

The MED-SuMo parameters used to describe the pockets are graphs
of SCFs containing the 4.5Å environment of the ligand and a high density
of triangles of chemical features (20-60) (3). This MED-SuMo database is
optimized for this bioisosteric application and has a virtually zero rate of false
positives. The detected structural alignment is retained only if the pockets have
a strong similarity, i.e., MED-SuMo score above 4.0. This set of 3D aligned
ligands therefore exploits most of all the relevant experimentally validated
3D superimposable ligands. False positives are defined here as non-relevant
superpositions, either from less highly similar sites or from highly similar sites
that are incorrectly superimposed. In this case, a correct superposition of the
pockets implies a relevant superimposition of the bound ligands. The aim here
is not to find pockets which are only partially similar, but similar as a whole
with possibly a few residues that differ in the neighborhood of the ligand. These
differences are tolerated in our bioisosterism definition as it is an additional
source of potential bioisosteric pairs and a reasonable assumption because the
ligands were designed for very similar pockets. In fact, even in the situation of
identical pockets, it is not certain that all fragments of the ligand were optimized
for binding and/or in some cases they may not even favor binding and act only
as linkers (spacers), so replacement defined from identical pocket are also an
approximation in some cases. In virtually all cases of relevant superpositions
with MED-SuMo, the local protein folds are very similar and therefore a relevant
superposition is a local superimposition of the local scaffolds. As a consequence,
fragments of superimposed ligands are likely to be exchangeable in this particular
protein environment. In cases where the protein conformation differs significantly
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in a part of the binding site where a bioisosteric rule could be potentially derived,
then it is likely that the ligands will not overlap there. Therefore no bioisosteric
rule will be derived from this part of the ligand, as the SEAL score cut-off verifies
the fragment overlap.

In this study, 1945 ligands with a molecular weight between 300 and 500
Da, co-crystallized with a X-Ray resolution of 2.0Å or better and preferably not
endogenous (like ATP, NAD), were selected from the PDB. Each ligand was
used to define a MED-SuMo query launched against the subset of PDB binding
sites described above. A consequence is that this DB is meant to search only
replacements in ligands mostly derived from synthetic chemistry. We do not
expect the replacements to be transferable to other ligand sources. To investigate
replacement for endogenous ligand, we’ve generated a larger database (10000
query ligands instead of 1945) containing also endogenous ligands to evaluate
the effectiveness of this approach in finding bioisosteres of natural compounds
(not described here).

5.5 million pairs are stored in this DB with query fragments ranging from a
heavy atom count (HAC) of 2 to a maximum of 65. Replacement of fragments
consisting of a single atom are therefore not included in the DB. However cases
of replacement of a single atom are found in the DB through replacements
of more than one atom, e.g., replacement of an ether (C-O-C) by a thioether
(C-S-C), where the resulting bioisostere will differ by only one atom. The pairs
are evaluated with the SEAL function (18) to select only highly overlapping
fragments, not necessarily having the same 3D coordinates for most atoms. A
SEAL score greater than 0.75 was selected in this work and the fragments were
defined using the sectioning algorithm (18) described below. For each "aligned
pair", the two molecular fragments, the SEAL score, the transformation matrix,
the MED-SuMo Score and the SCF count are stored in the DB, the last 3 values
being calculated for the superimposed ligands, query and one ligand hit.

Bioisosteric Replacement Rule Elucidation

As stated, the overall algorithm used for locating likely bioisosteric
replacements resembles the one described by Kennewell et al. (18). Nonetheless,
not only may default parameters differ but we perform fragmentation differently.
We also explicitly record attachment points that indicate where bonds were broken
during fragmentation. The user provides a series of ligands ("query ligands"),
each with one or more overlaid ligands ("hit ligands"). In the work presented,
the fragmentation method was a substructure pattern matching using a file of
desirable fragments in SMARTS format. We used a file containing PDB ligand
fragments derived from the whole PDB in order to match substructures of PDB
ligand efficiently. These fragments are diverse in size and chemistry and are
potentially applicable to any original ligand: substituents, linkers, pairs of rings,
pairs of ring with their substituents, also more complex fragments such as ring
assemblies with and without their substituents, and finally the scaffold with or
without their exocyclic double bonds and linker double bonds. The fragmentation
is therefore optimized for the fragmentation of PDB ligands, and the query
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ligands are fragmented into many overlapping fragments in this way. The hit
ligands overlaid are then fragmented using the sectioning algorithm presented
by Kennewell et al. (18). Wherever the resulting hit ligand section fragment
matches the query ligand fragment with a SEAL score of greater than 0.75, those
fragments are considered an equivalent pair and are stored in the bioisostere
database. The two fragments forming a pair are known as the "query fragment"
and the "replacement fragment". The SEAL score above 0.75 allows keeping
replacements which range from isosteres to less similar fragments allowing
replacements such as methyl ester to benzoxazole.

Bioisosteres Generation

The bioisostere generation described herein occurs in the FC-Bioisostere GUI
though an interactive process. In principle, it will also be available in a FC-
Bioisostere CLI for use in batch processes.

The usual workflow consists of a few steps: the user loads a ligand ("original
ligand") in its target bound conformation. This original ligand is fragmented into
"original ligand substructures". These ligand substructures are located in the DB as
fragments, and the corresponding replacement fragments will be used to generate
bioisosteric molecules from the original ligand. The fragmentation scheme is
the same as the one used to fragment the query ligand while building the DB.
Therefore, the fragmentation is less optimal for original ligands which are not
present in the PDB. However it is likely that there is a significant overlap between
those fragments and any ligand from synthetic chemistry. We found that it is indeed
the case frequently, and we demonstrate it here in the particular case of ADAM
ligands (see results).

Query Fragment and Replacement Fragment Selection

The possible replacements to explore for the query substructures are selected
from the bioisostere database according to a number of simple rules. For each
query substructure, all query fragments in the DB that have the same topological
structure (i.e., the same type of atoms connected with the same pattern of bonds)
are found. Any query fragments that have fewer attachment points than the query
substructure are disregarded, but any surplus attachment points are accepted.
These query fragments are optimally overlaid onto the query substructure using
Kearsley’s superimposition algorithm (22). Those fragments which have a RMSD
exceeding a given RMSD are discarded. A RMSD value of 1.0 Å was used in
this work.

The replacement fragments found in the bioisostere DB for the set of
acceptable query substructures was used in the recombination process, that is
the process by which the query ligand undergoes bioisosteric replacements.
"DbCount" is the term for the number of acceptable query fragments found. A
final filtering step is applied to the replacement fragments after alignment onto
the corresponding query substructures. Those without an attachment atom within
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a given distance threshold to each attachment point of the query substructure are
discarded. A value of 1.5 Å was used in this work. "ReplacementCount" is the
term for the number of acceptable replacement fragments found after filtering.

Any additional attachment atoms in the replacement fragment are disregarded
for the purpose of filtering but their locations and connectivities are stored. These
surplus attachment points may be viewed as potential sites for optimizing the
molecular structure in the final generated bioisosteres, if desired.

Bioisostere Enumeration

All possible bioisosteric molecules of the original ligand, given the set of
potential replacements, may be enumerated using a systematic and exhaustive
search algorithm. This algorithm proceeds via a depth-first, backtracking
tree search. When invalid replacements are found, those search branches are
terminated. If disconnected structures are created during the search, these
branches continue to be followed as, in some cases, a subsequently attempted
replacement may happen to resolve the disconnection.

Through this algorithm every possible valid combination of replacements on
the original ligand will be found. In the results presented herein, only a single
replacement in the original ligand is applied. The diversity of the bioisosteres is
therefore rather limited to the close space around the original ligand.

Bioisostere Reconstruction

Bioisostere Reconstruction is the process by which a query substructure is
removed from the original ligand (or intermediate bioisostere) and a replacement
fragment is inserted in its place to reconstitute a putative bioisostere. This process
is performed for every step of the bioisostere enumeration search. The specific
algorithm used in this study, referred as "Two-Way Attachment Recombination",
is one of a few alternatives. In this, all atoms comprising the query substructure
are simply deleted from the original ligand, leaving attachment points where
remaining atoms lose bonds. Attachment points representing the broken bonds
from the original ligand from the original source of the replacement fragment are
compared. Wherever possible a broken bond will be reconstituted at these points.
A bond is considered good if one attachment is within a specified distance of an
atom to which the other attachment point is bonded, and vice versa. Matching
the tolerance described above, an identical value of 1.5Å is used in this study.
To reduce the distortions inevitably seen in the recombined molecules, the
coordinates of the newly bonded atoms are adjusted according to the weighted
mean location of the real atoms with a multiplier of two and the attachment
atoms with a multiplier of one. This algorithm is considered a pure bioisostere
generation method, as only the originally broken bonds can be recreated.
Alternative algorithms, not presented for this study may form de novo bonds, may
delete clashing atoms, or even add additional atoms to reduce excessive strain
where the replacement fragment is linked into the original molecule.
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3.3. Bioisosteric Replacement: Case of ADAM Ligand

The alkenyldiarylmethanes (ADAMs) are a class of potent and highly specific
HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs). Unfortunately,
most of the ADAMs are too unstable toward hydrolysis in blood plasma to be
considered as potential therapeutic candidates. A series of alkenyldiarylmethanes
(ADAMs) with a benzo[d]isoxazole ring in place of the metabolically unstable
methyl ester moiety and an adjacent methoxyl group were synthesized by
Deng et al. (23). In that study, the authors’ initial results demonstrated that
the benzo[d]isoxazole ring is an effective bioisosteric replacement of the
metabolically labile methyl ester moiety in ADAMs. The replacement of
methyl esters with fused benzo[d]isoxazole could prove to be generally useful in
situations that require alternatives to hydrolytically unstable methyl esters. See
(23) and references therein.

We applied our protocol to explore bioisosteres of one ADAM molecule
cotaining the previously described ester substituent. The 3D model of
alkenyldiarylmethanes (ADAM) 28a, deposited by the same authors (23), was
retrieved from BindingDB (named BindingDB_2786) (24). This ADAM ligand
was used as the starting point for bioisostere enumeration. 272 bioisosteres,
excluding duplicates, were generated using all query substructures. Thirty-nine of
those bioisosteres were identified as replacing the methyl ester substructure. Only
one of the methyl esters is described here as the results are virtually identical for
the second ester. Among them, the benzo[d]isoxazole is found (shown in Figure
1). It is ranked 26th when ranked according to a SEAL score of 0.80 and ranked
29th according to MED-SuMo Score of 7.3.

In the next few paragraphs, we describe the origins of this methyl
ester/benzo[d]isoxazole pair in the Bioisostere DB. This pair originates from a
MED-SuMo run with the query pocket of RDA in the 2FXS PDB entry (25), a
HSP82 structure. This MED-SuMo query, one of the 1,942 that were launched
to generate the Bioisostere DB used in this study, generated the superimposition
of 135 pockets (hits) similar to the query pocket and, as a consequence, the
superimposition of 135 co-crystallized ligands with the query ligand RDA.
Looking more closely, these ligands are all from proteins of the GHKL fold
(26) sharing a high local protein fold and pocket similarity (HSP82, HSP83,
HSP90, GRP94, MutL, pyruvate dehydrogenase kinase). By manual inspection,
there are no false positives in these results. The MED-SuMo hit, from which
the hit fragment was extracted (3BMY CXZ) (27) is ranked 35th, according to
MED-SuMo score of 7.0. This illustrates that replacements are obtained not only
within the same protein family (HSP82 in this case) but also within very similar
pockets, independently of sequence identity.

In Figure 2, the MED-SuMo superimposition of RDA and the CXZ PDB
ligands is shown. The 3D superposition of the ligand from the 2D structure
would be very difficult without knowledge of the binding modes; in contrast, the
target-based superimposition is very accurate and unambiguous. It is also worth
noting that the methyl ester is a substituent but the benzo[d]isoxazole is part of the
scaffold, thus exemplifying the potential diversity of the bioisosteric pairs in the
DB. This information could not have been obtained, in this case, by considering
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only the substituents. Another key point is that the pair was generated from
HSP proteins and applied to HIV-RT. The protocol makes exhaustive use of the
entire wealth of knowledge available in the PDB, as opposed to using structural
information from only the protein family of the original ligand (HIV-RT).

Figure 1. (a) 2D depiction of the original ligand alkenyldiarylmethanes (ADAM)
28a; (b) 3D view of the same ligand (carbon atom rendered in light grey) and
its bioisoster with the benzo[d]isoxazole substitution (carbon atom rendered in

green) 158 x 122mm (96 x 96 DPI). (see color insert)
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Figure 2. (a) 2D depiction of the PDB ligand CXZ; (b) 2D depiction of the PDB
ligand RDA; (c) Screenshot from MED-SuMo GUI showing the superimposition
of the pocket of CXZ in the PDB HSP90 file 3BMY (rendered in green) and
the pocket of RDA in the PDB HSP82 file 2FXS (rendered in violet). One of
the matching residues, a methionine, is labelled with the residue number. The
Surface Chemical Features used to generate the 3D superposition of the proteins
are shown (balls and ball&sticks); (d) Same superimposition as in (c) but only
the superimposed ligand. RDA is rendered in violet and CXZ in green. The

area used to generate the pair (methyl ester/benzo[d]isoxazole) is schematically
shown within the ellipse. 224 x 232mm (96 x 96 DPI). (see color insert)
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3.4. Small Compound Molecule Libraries: Explore Bioisosteric
Replacements in HSP90 PDB Ligands

A list of HSP90 PDB ligands was obtained using the PDB website (1), using
the Seq. Similarity search feature, from an HSP90 alpha structure and selecting
90% sequence identity as cut-off. 68 ligands of the ATP site were collected and
downloaded with their 3D structure (bound conformation). In case of multiple
occurrences within a single PDB file, the first ligand was selected.

Our aim was to generate a library of compounds that are likely to bind to
HSP90 and then search for exact matches in BindingDB (24), in the PDB ligand
expo (21) and in the PubChem Compound libraries (28) (these databases were all
accessed on April 29th, 2011). For this purpose, we ran the MED-Search module
as described in Moriaud et al. (15).

In Figure 3, four example bioisosteres are shown together with the bioisosteric
pair from which they were proposed: (a) a sulfonamide/amide pair from RNA-
directed RNA polymerase displaying very similar fragments, (b) a carboxylate/
tetrazole pair from beta lactamase demonstrating a classical case of bioisosterism,
(c) a case of scaffold hopping using a bioisosteric pairs from the Protein kinase
family, (d) an amide/flurophenyl pair from serine proteases where the carbonyl
and the fluoro atom are both interacting with an H-bond donor. In HSP90 the
fluoro atom is facing the amine group of a lysine residue and, therefore, also with
the H-bond donor chemical feature. These four examples show the diverse origin
of the pairs in terms of protein families.

In total, 930,986 bioisosteres were generated. They are new compounds
compared to the 68 original ligands. Of these, 16,657 are unique (i.e., after
duplicate removal). All matches in the PDB are HSP90 ligands. Matches in
BindingDB are compounds which are known to bind to HSP90 (73), other
HSP proteins (4), Estrogen Receptor (13), Endoplasmin (1), Arachidonate
lipoxygenase (2) and adenosine receptor (4). This suggests that the bioisosteres
generation explores a focused region of biochemical space around the PDB
HSP90 ligands and are not in the chemical space of other targets. That implies
that most of the 16,657 bioisosteres are likely to be specific binders of HSP90.
There are 361 unique matches in Pubchem Compounds (from a total of 30.3
million compounds, only those with a HAC≥15 are considered) using a Tanimoto
cut-off of 0.9 and 283 exact matches. This demonstrates that a small molecule
library for HSP90 can be built using our bioisosteric approach using a single
fragment replacement and exact matches. Looking at the examples shown in
Figure 3, we can observe that the bioisosteres are designed in a rational way
using replacements based on reliable experimental structural data. Using two
replacements instead of one in this case study would increase greatly the diversity
of the bioisosteres and would be an option to generate a library with thousands
of compounds. Experimental testing would give a prospective validation of
this approach. Interestingly the bioisosteres are posed in the reference frame
of the original ligand (original ligands are all PDB ligands in this HSP90 case
study), therefore their geometries could be optimized in situ and prioritized for
onward testing and/or synthesis, according to their scoring using, for example,
a PLP intermolecular term (16). This was not done in this study, but previously
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described in our recent paper (16). That elaboration of the protocol was not
required here as the bioisosteres rarely have a high strain energy, because only
one fragment replacement was made for each proposed bioisostere and only and
because only original bonds were reconstituted.

Figure 3. Superpositions of original PDB HSP90 ligand (carbon atoms rendered
in grey) and bioisostere (carbon atoms rendered in green). Also shown the query
fragment and hit fragment superposition of the bioisosteric pair used to generate
the bioisostere from the original ligand. For each of the four panels PDB ID,
PDB Ligand ID and Protein name are given for: the original ligand; the query
fragment; the hit fragment (a) 2QG0 A94 HSP90; 2D3Z FIH RNA-directed RNA
polymerase; 2GIR NN3 RNA-directed RNA polymerase (b) 1YC1 4BC HSP90;
3HLW CE3 Beta lactamase; 3G32 3G3 Beta lactamase (c) 3BMY CXZ HSP90;
3E93 19B P38 Protein kinase; 2E9V 85A CHK1 Protein kinase; (d) 2BYI 2DD
HSP90; 1W13 SM1 Urokinase type plasminogen activator; 2R2M I50 Thrombin.

251 x 253mm (96 x 96 DPI). (see color insert)
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4. Target-Based Drug Design: Fragment-Based Approach from
PDB Data

4.1. Introduction

Obtaining experimental structural information on fragments or ligands
complexed to a target protein is a key element, and also a major limitation, to the
number and types of targets that are amenable to fragment-based drug discovery.
Consequently, computational methods play a crucial role in deriving structural
information for designing compounds that fit a particular site on a given protein.
If the three-dimensional structure of the protein is known, this information can be
directly exploited for the retrieval and design of new ligands.

Here, we review the key points of the work done at MEDIT on this
Fragment-Based computational application (15, 16). This is a target-based
approach that requires the 3D structure of the target. However, no ligand bound
complex structure is needed to design the ligand. This is in contrast with the
above description of the bioisosteric approach where only the 3D structure of
a ligand in its bound conformation (whether known or predicted) is needed.
Another difference is that the entire PDB is considered: ligands bound to RNA
and DNA are also considered. This is possible because the macromolecules,
proteins and oligonucleotides, are described using the same Surface Chemical
Features (SCFs) (H-bond donor, H-bond acceptor, hydrophobic, ring stacker,
etc.), though there are features unique to proteins such as thiol. Also, formal
charges are only relevant for proteins.

Our aim in using this approach is to detect protein local similarities which
are smaller in volume than whole binding site similarities. In the bioisosteric
approach only high similarities between whole sites are retained. Seeking pocket
similarities is efficient both with protein families (intrafamily hits) and in between
protein superfamiles (interfamily hits). Examples of similar pockets across protein
superfamilies are rare. They occur when pockets bind similar ligands with similar
bindingmodes. Seeking protein local similarities providesmore hits across protein
superfamilies than simple pocket mining does. Local similarities are exploited to
repurpose fragments of any PDB ligands and in particular of drugs. Repurposing
ligands as described above is limited to similar binding sites. Therefore, potential
repurposing fragments of ligands is more likely because similar sub-pockets are
more often found than similar binding sites.

In contrast to docking/scoring protocols, the pose of the fragments does not
rely on the exploration of all possible binding modes nor on a scoring function
to rank the poses. Mining within protein superfamilies like the protein kinases
allows identification of the chemical moieties from a ligand that are the most
likely to target-hope from one kinase to another. One such example is the chemical
moiety bound to the hinge of kinases and can be in most cases transferred from
the different conformations of DFG-out to DFG-in conformations. This is not
the case for the fragments of the ligand in the allosteric pocket. Therefore this
approach is well suited to mine all binding sites, including flexible sites with
compounds bound. The interfamily hits are for example fragments binding to
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hinge-like motifs found in other proteins as in the case of the protein kinase ATP
site and the non-nucleoside HIV reverse transcriptase (14).

4.2. Method

This FBDD protocol is based on the assumption that similar protein surfaces
are likely to bind the same fragment with the same pose. The large volume of
protein-ligand structures now available in the PDB enables applications of the
protocol for diverse fragments and for many protein families (15). The PDB is
encoded as a database of MED-Portions, where a MED-Portion is a structural
object encoding protein-fragment binding sites. MED-Portions are derived from
mining all available protein-ligand structures with any library of small molecules
by the MEDP-fragmentor software. They contain atoms, dummy atoms keeping
track of where the bonds were cut to make the portion (that is the substructure or
fragment) of the PDB ligand. Mined with the MED-SuMo software to superpose
similar protein interaction surfaces, pools of matching MED-Portions can be
determined for any binding surface query. A typical MED-Portions database
contains one million of portions of PDB ligands. To generate hit-like molecules
from fragments in each MED-Portion, MED-Portions are combined in 3D with
the MED-Ligand toolkit.

4.3. Hybrids: Scoring and Ranking

This fragment-based drug design protocol generates hybrids from a set
of MED-Portion chemical moieties selected with several criteria (as described
above). These hybrids are thus likely to have:

(1) chemically reasonable structures, since they are generated from
chemically accessible molecules,

(2) to fit in the binding site, since the selected MED-Portions chemical
moieties have been selected to have a maximum number of tolerated
steric clashes, and

(3) potentially favorable interactions with the protein since they have been
co-crystallized with a protein containing locally similar biochemical
features.

In our previously published study on kinesin allosteric pockets (16), the
generated hybrids were analyzed and scored using an in situ energy minimization
step prior to the computation of standard scoring functions. We found that the
intermolecular term of the PLP scoring function was simple, fast and efficient at
retrieving known actives at the top of the list. This scoring function is validated
on this target and on other targets (data not published) and is the recommended
method to rank such hybrids (and bioisosteres when generated from an original
ligand bound to its target). There is no need to do in situ minimization of the
hybrids as long as only the PLP intermolecular term is used to score the hybrids.
The PLP intramolecular term is usually very high and not reliable because the
hybridization leads to bond length and bending angles which are not optimal,
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though an in situ minimization would reveal in most cases that the conformation
is close to a minimum in terms of RMSD.

4.4. Library Design

This protocol was used to generate ligands for a VEGFR2 protein kinase. In
the first step, fragments of PDB ligands derived from the protein kinase family
(intrafamily 75%) and from other families (interfamily 25%) are aligned within
the binding site of interest. These fragments are combined through hybridization.
To avoid generatingmillions of compounds, we focused the design towards ligands
having a phenylamide moiety close to the gatekeeper in the same way as the GIG
ligand in the 2OH4 structure (29). In situ hybridization of these fragments leads to
220k hybrids which represent 10,000 scaffolds. 175 scaffolds match the scaffolds
of PDB ligands, therefore: (1) PDB Protein Kinase scaffolds are retrieved and (2)
most of the scaffolds are new compared to the ones of the PDB, and are then likely
to be original compounds, at least for structural studies.

In the GPCR study, there are virtually no intrafamily hits as there are very
few GPCR structures in the PDB. Using only interfamily hits, the shape of known
ligands was retrieved and some of the hybrids matched known beta-adrenergic
ligands. These hybrids contained compounds similar to the initial 3 ligands
(PDB codes 2rh1, 3d4s, 2vt4). We also obtained 11 other ligands (CGP12177,
ICI-118551, SR59230A, alprenolol, carvedilol, pindolol, NIP, bevantolol- S,
nebivolol, timolol, bucindolol. This shows that the protocol can generate
molecules similar to known active ligands. This is a significant retrospective
validation as these GPCR ligands are not present in the PDB (15).

5. Summary

We presented a new protocol to predict bioisosteric structures based on the
wealth of 3D protein structures now available both publicly and, in principle,
within pharmaceutical research organizations. This method is complementary to
the more usual literature-based and de novo approaches. Our database offers some
convincing advantages: We can link the resulting hypothetical bioisosteres back to
the original 3D structures corresponding to the suggested replacements. This leads
to higher implicit confidence in the predictions, which is extremely desirable to the
scientists involved in its use. Furthermore, our method can be built to hold not only
generic sets of replacements, but also therapeutic target-specific replacements.
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Chapter 6

A Fragment-Based Docking Engine: eHiTS

Exhaustive Fragment Pose Enumeration and Matching Using
Surface Contact Based Statistical Score

Zsolt Zsoldos, Ph.D.*

Chief Scientific Officer, SimBioSys Inc., 135 Queen’s Plate Dr.,
Toronto, ON, Canada M9W 6V1

*E-mail: zsolt@simbiosys.ca

There are numerous methods for flexible ligand docking,
including stochastic and systematic methods to sample the
conformational and pose space of the ligand. The eHiTS
docking engine described in this chapter uses a fragment-based
approach closely resembling the experimental fragment-based
design techniques that flood the active site cavity with small
binding fragments independently from each other and then look
for ways to link up the fragments. eHiTS is a deterministic,
exhaustive flexible docking method that systematically covers
the part of the conformational and positional search space
that avoids severe steric clashes, producing highly accurate
docking poses at a speed practical for virtual high throughput
screening. A new scoring function has been developed as part
of the eHiTS flexible ligand docking software. The method has
a unique approach to combine the strengths of the statistical
and empricial scoring functions. Statistical information was
collected from a large number of crystal structures considering
the full distribution of interaction geometries as described by
the temperature factors associated with every atom in the crystal
structrues. Empricial functions are derived from the statistical
data to define the final scoring function terms.

© 2011 American Chemical Society
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Introduction

The process of finding the binding conformation and pose of a chemical
structure in the active site of a receptor macromolecule is called flexible ligand
docking. It can be considered as an energy minimization problem, however most
of the available molecular mechanics programs are too sensitive to local minima
to find the appropriate docking poses (1).

Various stochastic search methods can be used to tackle this problem,
including Simulated Annealing (e.g. AutoDock2 (2), Dockvision (3), MCDOCK
(4)), Genetic Algorithms (GOLD (5), AutoDock3 (6)), Tabu Search (ProLeads
(7)), etc. They have been reported to be successful in reproducing the experimental
binding conformations of some ligand receptor complexes (5). The search
algorithm in these methods is a random probing technique, driven solely by a
scoring function. However, the search space is vast (see details in consequent
subsections), thus these methods can not guarantee to find the optimal solution
in finite time.

There are also systematic methods, including incremental construction (FlexX
(8), Hammerhead (9), DOCK4) and multiple conformer rigid body docking (e.g.
FLOG (10), DOCK3 (11) or FRED (12)). Due to the vast search space size,
these systematic methods employ various heuristics and sampling limits to avoid
combinatorial explosion. It is difficult to strike a balance in the sampling such
that the conformational and pose space is searched exhaustively within reasonable
CPU time. The incremental construction methods employ a coarse sampling of
conformations using a small number of discrete rotomers. The multiple conformer
rigid docking systems use a few hundred low energy conformers of the ligand.

Statistical analysis of experimental data from bound ligand conformations
was performed and the findings indicate that sampling of low energy conformers
is insufficient to reproduce protein-ligand binding geometries, a much more
exhaustive search is required. eHiTS (electronic High Throughput Screening)
offers a truly exhaustive systematic search algorithm that considers all poses with
a fine resolution sampling to guarantee sufficient accuracy.

The accuracy of the eHiTS algorithm is demonstrated on reproducing known
bound conformations and poses of ligands from co-crystallized proteins. The
program’s ability to enrich database selectionswith actives is alsomeasured aswell
as the scoring function’s ability to reproduce experimentally measured binding
affinities.

The Fragment Docking Problem

There are some notable differences in the problem of docking small molecule
fragments into actives sites compared to docking full ligands. The fragments are
typically smaller and have few or no rotatable bonds. Smaller size means that
the fragments can fit in many more poses and orientations, thus the pose space is
significantly larger, on the other hand the conformational search problem is trivial
within the fragments.
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Pose and Conformational Sampling Requirements

A fundamental design goal of the eHiTS system is to provide an exhaustive
systematic search of the part of the conformational and pose space that avoids
severe steric clashes with sufficiently fine sampling to reproduce experimentally
observed binding modes. In theory, a truly exhaustive search should explore
the infinite continuum of rotational and translational space. In practice, discrete
sampling is acceptable if it is fine enough to not miss a solution.

Statistics on hydrogen bond geometry in small molecular crystal structures
(13) show a range of 1.6Å to 2.2Å distance between the hydrogen and the acceptor
atoms, i.e. it can be described as 1.9Å ± 0.3Å.

Hydrophobic contacts are observed (14) in the range of 3.2Å to 4.2Å between
the atom centers of two carbons, i.e. 3.7Å ± 0.5Å.

Aromatic π stacking interactions and metal ion interactions also have their
own ranges of acceptable geometry with similar tolerances. It is clear that a half
Angstrom difference in atom positions may mean losing a crucial hydrogen bond
or cause a severe steric clash instead of a perfect van derWaals contact. Therefore,
we define sufficient sampling to mean that atom positions must be sampled at least
every half an Angstrom.

This definition of sufficient sampling for atom displacements implies a
requirement for rigid fragment rotation and dihedral angle sampling. A simple
trigonometric calculation shows that a tangential movement of 0.5Å is caused
by rotation of about 5º at a radius of 7Å. Drug-like ligands can easily reach or
exceed the size of 7Å, therefore rotations and dihedral angles must be sampled at
least every 5 degrees.

Similarly, there are ligand structures, e.g. the ligand from PDB code 1CX2,
that contain rotatable bonds that influence the position of atoms 7Å away from the
axis of rotation. If the dihedral angle is changed by 5º, then the the atom far away
from the axis would move by more than 0.5Å Angstroms. If a sampling algorithm
missed the correct dihedral by 10 or 15 degrees then such atoms would end up
severely clashing with the receptor site instead of creating a perfect hydrophobic
surface contact. In other words, a 15-30+ degree sampling is far too crude to be
useful for a docking program that aims to be exhaustive.

Bound conformations of 5000 ligands in high resolution (less than 2.5Å)
crystal structures from the RCSB Protein Data Bank (PDB) have been analyzed
to collect statistical data on the dihedral angles of rotatable bonds. Table 1 shows
how many ligands have all their dihedral angles within the given ± range to either
a staggered or a gauche value, i.e. how many bound ligand conformations would
be found within a given error if only those dihedral angles were sampled. Another
important data point is that about 10\% of the bound ligand conformers exhibit at
least one eclipsed dihedral angle, i.e. 0±5º between sp3 centers each bearing one
additional heavy-atom neighbor. 97% of X-ray conformations in this set deviate
by more than 5º from conformations generated by sampling the dihedrals of each
rotatable bond every 60º . It is clear from the data that it is necessary to include
conformations which in an isolated molecule would be of high energy, in order to
sample the conformations adequately for docking.
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Table 1. Statistics concerning staggered and gauche conformers in X-ray
structures of bound ligands from 5000 PDB entries with 2.5Å or better

resolution. The Table shows how many ligands have all their dihedral angles
within the given ± range to either a staggered or a gauche value

Error limit Number of ligands Percentage

5º 108 2.2%

10º 211 4.2%

15º 315 6.3%

Many researchers have performed similar analysis (15–18) and come to
essentially the same conclusions regarding high-energy conformations of bound
ligands.

Search Space Size

The size of the search space can easily be calculated from the sampling
requirement defined above. For an average sized ligand with six rotatable bonds,
the following formula is computed:

• Translations along 3 axes: every 0.5Å in 10Å box, i.e. 203
• Orientations about 3 axes: every 5º in 360º, i.e. 723
• Dihedral angle sampling: every 5º in 360º, i.e. 726
• Total number of poses: 203 x 723 x 726 ~ 1020

This number (ten to the power twenty) is so huge that brute force evaluation
of all those poses with a relatively fast scoring function -- that can process 2
thousand poses per second -- would take 3 billion years on a single CPU. Using
large supercomputers or distributed clusters (e.g. Grid computing) with hundreds
of thousands of CPUs, it would still take more than tens of thousands of years to
dock a single ligand.

Stochastic methods that employ fine enough sampling, do search this same
vast space, but instead of systematic sampling, they employ random walks.
Decisions are made based on a goal function evaluation and some stochastic
decision process whether or not to keep a given trial pose. However, new trial
poses are selected by some random alteration of an already tested pose. There
is no driving force employed towards new areas of the search space that are yet
unexplored. Therefore the poses examined by stochastic methods, if represented
as points in N-dimensional space, are comparable to Brownian movement. Such
random walks are known (19) to over-sample some regions while leaving some
large areas completely unexplored. The flexible ligand docking pose space
is 10-20 dimensional (depending on the number of rotatable bonds) and the
sampling problems of random walks are much more severe than they are in low
dimensional problem space.
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Our goal was to develop an intelligent exhaustive method that can limit the
fine sampling of the search space to areas of interest where good scoring solutions
may reside, while eliminating large portions of the vast search space where it is
guaranteed that no good scoring position can be found.

The eHiTS Pose Generation Algorithm

As demonstrated above, brute force evaluation of all possible poses and
conformations with sufficiently fine sampling is not feasible within practical CPU
time limits. Therefore, the search space must be reduced. One reduction applied
by eHiTS is to limit the search to conformations and poses that avoid severe steric
clashes between receptor and ligand, i.e. where geometric fit is possible.

In order to explore the vast search space exhaustively in an efficient manner,
our approach involves sub-division of the task into smaller partial problems that
are easier to solve. However, unlike DOCK or FLexX, eHiTS does not use an
incremental construction method, but instead attempts to find the global optimum
by enumerating combinations of independent partial structure dockings.

eHiTS has a novel flexible ligand docking method that is exhaustive on the
conformations and poses that avoid severe steric clashes between receptor and
ligand. The algorithm generates all major docking modes that are compatible with
the steric and chemistry constraints.

First the binding pocket is determined by building a steric grid for the whole
receptor, dividing regions into separate pockets and identifying the possible
interaction sites. Then, a cavity description is built that consists of thousands of
geometric shapes (polyhedra).

The ligand is divided into rigid fragments and connecting flexible chains.
eHiTS docks all rigid fragments to all possible places in the cavity independently
of each other. This is not an incremental construction, all rigid fragments are
docked to every possible place regardless of the other fragments. Although, the
poses are scored, no local (biased) decision is made to reject any stericaly feasible
pose for any rigid fragment based on interaction score.

An exhaustive matching of compatible rigid fragment pose sets is performed
by a rapid hyper-graph clique detection algorithm. This may yield a few hundred
(small pocket, few rigid fragments) to several million (large pocket, many small
rigid fragments) acceptable combinations of poses. However, at this point, the
scores for each component have been evaluated, so it is possible to make a global
decision as to which fragment pose combination is the best.

The flexible chains are then fitted to the specific rigid fragment poses that
comprise a matching pose set. The reconstructed solutions define a rough binding
pose and conformation of the ligand. These poses are refined by a local energy
minimization in the active site of the receptor, driven by the scoring function.
Figure 1. shows a greatly simplified schematic example of the process, how the
ligand is fragmented, the rigid fragments are placed into the cavity in multiple
poses and then a suitable set of ligand poses can form a solution.
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Figure 1. A simplified schematic example showing the processing stages of the
eHiTS pose generation algorithm.

Geometric Shape and Chemical Feature Graph

The fragmentation of the ligand is focused on separating rigid fragments from
the flexible linkers. All ring systems are considered rigid and their conformation
is preserved as given in the input. Therefore it is desirable to use multiple ring
conformers (e.g. chair, boat and twist boat for a cyclohexane) for complete
conformational sampling.

Acyclic fragments with double or normalized (resonance) bonds and sp2
hybridized atoms are also considered rigid, e.g. including the amide functional
group. Figure 2 shows an example of the fragmentation of a ligand. Whenever a
bond is broken during this fragmentation, both atoms of the bond are duplicated,
i.e. they appear both in the rigid fragment as well as in the flexible chain fragment.
These are referred to as the join atoms. Distances of the join atoms are used to
determine the compatibility of rigid fragment poses in the pose-match phase of the
algorithm. The join atom positions serve the end point constraints of the flexible
chain fitting, furthermore they are used to define the overlay transformation in the
reconstruction of the complete solution poses before optimization.

Both the cavity and the candidate ligands are described by a Geometric Shape
and Chemical Feature graph, herein referred to as GSCF graph. The nodes of the
GSCF graph represent a rigid shape by a simplified geometric hull. It is derived
from regular polyhedra and then distorted to shrink-wrap the actual molecular
fragment or cavity region (see detailed explanation of the shape generation below
separately for the cavity and ligand fragment case).
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Figure 2. The ligand is broken into rigid fragments and flexible chains.

Chemical feature flags are associated with each vertex of the polyhedron. The
edges of the GSCF graph define the connectivity between the nodes, including
distance boundaries for the acceptable relative positions of the nodes.

Feature-Graph Representation of the Cavity

The cavity is described as a set (thousands) of geometric shapes, polyhedra.
These polyhedra are generated by picking center points on a regular 0.5Å spacing
3D grid, placing a tiny polyhedron on the grid, then “stretching” its vertices out
from the center until they reach the surface of the cavity. The center points are
selected such that are suitable to place the center of mass of a rigid fragment
there. Grid cells that either violate the receptor boundary or are too close to it,
are not suitable as center points. The distance from the boundary must be at least
an atom radius. The space is measured in various directions from those centers and
the regular polyhedra is distorted so that the vector length from the center point
matches the distance measured, thus building polyhedra that represent the shape
of the available space around the center. Figure 3 demonstrates the generation of
a cavity node using a 2D cartoon for sake of simplicity. The 3D polyhedra overlap
with each other and fill the whole cavity space. Chemical feature flags are assigned
to the vertices of the polyhedra.
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Figure 3. Simplified 2D cartoon demonstrating the generation of a cavity
descriptor polygon using 12 vectors in 30 degree increments. The available

space around grid points is measured in directions dictated by regular polyhedra
shapes, then chemical property flags are assigned to the end points based on the

chemical activity of the closest receptor atoms.

The distance measurement from the center to the receptor boundary is
performed using a 3D steric grid, which is generated within a bounding box of the
binding site. This bounding box also acts as an artificial closing of any binding
pocket that is open to the solvent water. If no receptor boundary is hit by the
scanning ray that is measuring the empty space in the direction of a vector, the
the bounding box terminates the ray placing a practical limit on the polyhedron
vector length.

The current version of eHiTS does not consider protein flexibility, while
it handles ligand flexibility exhaustively. In order to handle protein flexibility,
this feature graph representation would have to be extended either by allowing
alternative vector size sets corresponding to each center, or allowing ranges of
possible vector lengths and using some probability function within the range
during the matching process.

Feature-Graph Representation of the Ligand

The rigid fragments are also wrapped into polyhedra described by directional
vectors from their centers of mass. Again the vectors from the center to the vertices
of the polyhedra are scaled to match the distance from the center of mass of the
ligand fragment to the van der Waals surface in the direction of the vector. Figure
4 shows an example of how a ligand is divided into rigid fragments and shrink-
wrapped into a polyhedron shape. The polyhedron is color coded to represent the
chemical features assigned to the vertices.
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Figure 4. The ligand is broken into rigid fragments and each fragment is
wrapped into a polyhedron shape with chemical properties assigned to the

vertices of the polyhedron.

The polyhedrons are created by shrinking the vector lengths from the center to
the vertices, but the directions are maintained, therefore the angles between them
are not changed either. Consequently, if the self symmetric transformations of the
regular polyhedra are applied to these polyhedra, then each directional vector from
center-to-vertex will be overlayed on another such vector by the transformation.
Each transformation can be described as a specific permutation of the vertices.

Rigid Fragment Docking

The rigid fragment docking proceeds by placing the rigid fragment polyhedra
inside the cavity polyhedra. All combinations are explored (each rigid fragment
polyhedron with each cavity polyhedron) and all orientations of the polyhedra. We
use directional vectors based on the vertices of an icosahedron and a dodecahedron
combined. These regular polyhedra have 60 self-symmetric transformations each,
so we use those to orient the rigid fragment polyhedra inside the cavity polyhedra.

The polyhedron representation allows a very rapid enumeration of all fitting
poses using the following method. The GSCF graph nodes contain the length of
the directional vectors to each vertex, and they also contain the decreasing order
of these lengths.

1. The lengths of the ligand node vectors are checked against the cavity
vector lengths in decreasing order. If any ligand vector is larger than its
corresponding cavity vector plus ε grid-tolerance, then it is impossible
to fit the rigid fragment node into that cavity node in any orientation,
therefore no detailed orientation check is necessary, so the whole loop of
the following step can be skipped without any loss of solution.

2. All 60 self-symmetric transformations of the regular polyhedra
(dodecahedron and icosahedron) are stored in the form of a permutation
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table of their vertices. A loop is run to test each of the 60 orientations,
using the permutation table, in each execution of the loop. The vertices
of the ligand polyhedron are mapped to the vertices of the cavity
polyhedron via the permutation table. The directional vector lengths are
compared and the pose is rejected if the ligand vector is longer by more
than ε grid-tolerance for any vertex.

3. For each vertex map that passes the vector length based steric check, the
chemical feature flags of each vertex pair are scored and summed up to
give a complete chemical fit score of the given ligand fragment pose.

4. The 3D coordinates are computed for the acceptable poses based on a
transformation matrix that is pre-computed and stored for each row of
the permutation table.

Note that in steps 1 and 2 a specific grid-tolerance value must be applied to
the comparison of the vector lengths, i.e. allow the ligand vector to be longer than
the corresponding cavity vector by a small amount and reject the pose only if the
ligand vector is longer than cavity vector plus ε. This ε grid-tolerance depends
on the resolution of the 3D grid that is used to generate the cavity center points
(by default a=0.5Å resolution is used, but it is a user adjustable parameter, higher
accuracy can be reached at the expense of more CPU time if this size is reduced).
The reason is that cavity graph nodes are generated at discrete locations controlled
by the grid, and it is possible that if the center is shifted by a fraction of a grid
cell, then a larger fragment may fit. However, this sampling error is limited by the
largest possible distance of the ideal position to the grid cell corner:

All of the chemical property flags that apply are assigned to each vertex of
the polyhedron, both on the cavity and the ligand fragments. A scoring matrix is
defined for the flags which contains a score for each flag-to-flag interaction pair
(more details on the flag based scoring are given later in the scoring section). The
score of a rigid docking pose is computed by summing all the scores of any flag
pairs present on matched-up vertices between cavity and ligand.

For some larger rigid fragments, the 32 vectors of the combined polyhedra
will produce a surface sampling where distance between surface points is larger
than the desired 0.5Å. However, this does not limit the sampling precision of the
docking, because multiple cavity polyhedra (partially overlapping each other) are
used for the mapping, so there are target positions for each ligand vector with
sufficient density. The cavity polyhedra are generated on a 0.5Å spacing grid with
multiple orientations considered for the same center.

Typically, the program evaluates several million mappings of the rigid
fragment polyhedra to cavity polyhedra. The ones that do not fit geometrically
(steric violations) are rejected and the score is computed for those that do fit.
Typically, there are tens of thousands of fitting poses (10-20 thousand for small
pockets and large fragments, 60-100 thousand for small fragments in large
cavities).
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When the number of acceptable poses is too large to handle during the next
(pose matching) phase, a clustering algorithm is applied to group the poses that
are close to each other in RMSD metric space and a single representative is kept
from each cluster. The diversity of the poses and their coverage of the cavity site
is maintained during this clustering step.

This clustering step could potentially compromise the exhaustiveness of the
search if the cluster representatives do not cover the pose space with sufficient
resolution. The maximum number of cluster representatives is controlled by
a user adjustable parameter and by default it is set to a value that achieves
a fast (sub-second) PoseMatch run-time with an average separation between
representatives of about 1-1.5Å RMSD. In terms of search space sampling, this
means that a sampling pose is generated within √3/2 times the separation distance
from any query pose (in the worst case), while the average error from the X-ray
pose can be estimated to be about 0.43Å-0.65Å. This range goes slightly higher
than our desired precision, but the parameter can be adjusted to achieve more
precise sampling at the cost of CPU time. There is another tolerance applied
during the PoseMatch phase that is computed from the actual average separation
distance between the poses. That tolerance is applied to the compatibility check,
i.e. comparison between join point distances and connecting chain lengths. The
tolerance is dependent on the actual average pose separation, so that it counters
the loss of precision, allowing the selected poses to represent their whole cluster
(within the radii) for the purpose of matching instead of considering strictly the
particular pose. Thus the algorithm maintains the exhaustive coverage via the use
of this calculated tolerance and the ability to refine the search by adjusting the
control parameters of the clustering.

It is very important to keep fragment poses that do not get good scores, because
even for high affinity ligands it is possible that some fragments are acting simply as
spacers and are not contributing much to the binding. In fact, analysis of the X-ray
complexes in the test set shows that many contain fragments that either do not
make any interaction with the protein, or even make clearly repulsive interactions.
Of course, the energy loss due to the “bad” interactions must be compensated by
some strong attractive interactions formed by other fragments of the ligand.

All acceptable poses of the rigid fragments are computed regardless of other
fragments in the ligand. Therefore, the information about the acceptable poses of a
given fragment can be reused when another ligand containing thesame fragment is
docked to the same receptor. This situation occurs very frequently during a virtual
screening study when many thousands (or even millions) of drug-like ligands are
docked to a given target receptor, because such ligands often contain some typical
functional groups. The DockTable extension of eHiTS makes use of the repeating
fragments to speed up the screening process by using an SQL database to store all
the results of the rigid fragment docking phase. An efficient hash key (canonical
name) is used for indexing the database to retrieve the previous results. If no results
are stored for the given rigid fragment yet, then the docking proceeds as described
above in this section, then the results are deposited to the database.

It is sufficient to store the 3D transformation and the score for each pose,
therefore a space efficient storage can be achieved that requires about 1MB disk
space per rigid fragment for the DB (this size does not depend on the size of the
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fragment but it does depend on the size of the cavity). We have run experiments
screening various ligand libraries against various receptor targets and observed the
speed-up curve of the docking time per ligand as well as the number of fragments
deposited to the database. Significant speed-up is observed during the first few
hundred to few thousand ligand docking runs, but the speed tends to level out
between 5 and ten thousand ligands (the speed is 2-4 fold faster at that point than
docking speed without the SQL DB). The number of commonly re-used fragments
is in the order of a few thousands, therefore a limit of ten thousand fragments has
been implemented in the DockTable extension of eHiTS. This limits keeps the disk
space requirement under 10GB per receptor regardless of the size of the ligand
library docked.

Pose Matching

There are several thousand alternative poses generated and scored at the rigid
docking step for each rigid fragment. The next task is to select pose-sets containing
a single pose for each ligand rigid fragment such that the distances between them
are compatible with sizes of the flexible chains that should connect them. In
addition, they must not bump into each other.

One can think of this task as mapping the ligand graph (where each node
represents a rigid fragment) on to the receptor cavity graph (where each node
represents a possible placement position and orientation of a ligand rigid
fragment). Such graph-mapping problems are often solved by graph algorithms
operating on a hyper-graph rather than on the graphs to be mapped. The
hyper-graph is a higher order graph, where nodes represent mappings between
the original graphs.

This task is solved by clique detection on the following hyper-graph.
Each node of the ligand graph is represented by a set of hyper-graph nodes,
one corresponds to every accepted rigid fragment pose, i.e. the nodes of the
hyper-graph represent individual mappings of ligand graph nodes to a cavity
graph nodes. There are edges between those node pairs where all the following
conditions hold true:

a) The nodes correspond to poses of different ligand fragments,
b) There is no steric clash between the two poses, and
c) The distance between the join points of the fragments in the given poses

is compatible with the length of the chain that should connect them, i.e.
it is within the interval that is possible to span by the given chain.

Maximal cliques of this hyper-graph should consists of as many nodes as the
number of rigid fragments in the ligand (number of nodes of the ligand graph).
Each maximal clique defines a unique docking solution. By enumerating the
maximal cliques we can find all distinct docking modes of the ligand in the
receptor cavity.
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Figure 5. Example adjacency bit matrix of the hyper-graph corresponding to a
ligand that consists of 4 rigid fragment. For each rigid fragment, there are 8
poses represented in the matrix. Rows and columns 1-8 correspond to poses of
rigid fragment 1, 9-16 belongs to rigid fragment 2, 17-24 fragment 3, 25-32

fragment 4. The stars represent fragment pose pairs that are compatible, i.e. not
bumping into each other and placed at a distance that can be spanned by the

connecting chain fragments.

Figure 5 shows a simple example of an adjacency bit matrix of such
a hyper-graph. The matrix M can be divided into blocks representing pose
combinations between the poses of two specific rigid fragments. The example
matrix corresponds to a ligand that contains 4 rigid fragments, and for the sake
of simplified example we assume only 8 poses for each fragment. Rows (and
columns) 1 to 8 correspond to rigid fragment number 1, rows 9-16 correspond to
rigid fragment number 2, etc. The stronger lines indicate the boundary between
the blocks that correspond to different rigid fragments. The stars (*) mark the
bits that represent edges, i.e. where the column and row index corresponds
to compatible pose pairs. The diagonal blocks are empty, because they would
correspond to alternative poses of the same node, so they are not compatible, i.e.
only one pose can be selected for each node. The task is to find an S set of 4
indices such that:

For all i,j in S, i ≠ j: Mi,j = 1
The highlighted stars mark the solution maximal clique S={3,12,22,27}.
The clique detection algorithm described by Bron and Kerbrosh (20) was used

as the basis for the pose matching implemented in eHiTS. The original algorithm
was improved using the extra information available about the blocked nature of
the adjacency bit matrix of our hyper-graph. Note, that if any row i contains an
empty segment corresponding to any rigid fragment, i.e. If

then the pose corresponding to row i cannot be part of any solution, because
there is no suitable pose for rigid fragment r that would be compatible with pose
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i. Rows 1,2,4,5,6,7 and 8 are all examples of such unusable rows (e.g. row 4
has no star in columns 17 through 24 that correspond to the third rigid fragment,
this segment of row 4 is highlighted by yellow on the figure). Such rows can all
be deleted to reduce the problem size before the recursive (back-track) algorithm
is started. Furthermore, during the back-track algorithm, a bit row is maintained
that contains the logical and operation of the matrix rows corresponding to the
currently selected poses. If this bit-row contains an empty segment corresponding
to any rigid fragment not yet represented in the clique, then it is not possible to
find a completion to the current set, so the whole search tree branch can be cut and
the algorithm steps back to choose a different candidate pose for an earlier rigid
fragment.

With this problem specific optimization, the algorithm becomes very efficient.
In fact the worst case complexity is no longer exponential as it was for the general
case, but a polynomial bound can be defined, where the degree of the polynomial
is equal to the number of rigid fragments.

Each maximal clique found in the hyper-graph defines a different docking
solution by selecting a pose for all the rigid fragments of the ligand in such a
way that they do not bump into each other and the distances between them are
compatible with the lengths of the flexible chains. The 3D coordinates of all atoms
within rigid fragments are defined for every solution and the sum of the scores of
the rigid fragments give a very good indication of the total interaction score that
can be achieved by each solution. Even though the number of solution cliques
may be large (it is several million for some examples), global scoring information
is available for them at very low cost (summing up a handful of pose scores), so it
is feasible to evaluate them all and select the most promising candidates for further
processing.

Note, that selecting a subset of solutions at this point in the process does not
compromise the exhaustiveness of the algorithm since the selection is based on
global scoring information. All solutions are enumerated exhaustively, the number
of PoseMatch solutions is the total number of distinct docking modes possible.
The search engine must be exhaustive in order to be able to present all potential
solutions to the scoring function for evaluation, as achieved here.

As explained in the scoring section, the full detailed and sensitive scoring
function is not employed at this phase, but a faster, crude (greedy) function is
employed. The final scoring function has also been tested in the rigid docking
phase, but it was found to be inferior to the crude function in selecting the correct
poses. This result can be explained by the fact that the final scoring function is too
sensitive to precise interaction geometries, therefore it can only differentiate and
rank optimized poses correctly.

Flexible Chain Fitting

Following the rigid fragment pose set selection, it becomes necessary to deal
with the rotatable bonds joining them, i.e. the challenge of flexible chain fitting.
However, this task is much simpler than is the case in the general flexible docking
problem, because two atom positions at each end of the chain are already fixed, as
they are given by the join atoms of the selected rigid fragment poses.
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The task is to find a dihedral angle sequence that will lead from the given
starting points to the given end points while avoiding steric clashes with the
receptor boundary and the rigid fragments along the way. For smaller chain
lengths, even analytical calculation of the complete algebraic solution space
would be feasible without considering the steric boundary conditions.

A more general approach has been chosen to find a suitable set of dihedral
angles that bridge the distance between the atom pairs and avoids steric clash with
the receptor while preferring angles near low energy rotomers. First, a lookup
table is used to select initial candidate chain conformers that consist of low energy
dihedrals that have ending atom pair distances similar to those required. Then a
local minimization is performed to tweak the dihedrals to reach the exact required
distances.

For the lookup table, a double diamond lattice is used, which contains all
pathways consisting of staggered and gauche dihedrals up to the desired number of
bonds. The lattice is positioned on the starting atom pair, then the ending atom pair
positions are used to locate nearby atoms in the lattice. The lookup table associated
with the diamond lattice contains information about the path lengths (number of
bonds from the starting atom) for each atom of the lattice. Any path with the
required number of bond that ends within 3Å of the desired 3D coordinates will
be considered. A deterministic minimization, based on the partial least squares
fit method, is applied to tweak the chain until the end points match precisely and
no severe boundary violations occur. This tweaking method may produce any
dihedral necessary to reach the end points and resolve clashes -- even the highest
local energy eclipsed conformation is allowed, if necessary. However, the local
optimization starts out with low energy rotomers and will only apply the minimum
necessary distortion to resolve steric clashes and bring the end points closer to the
goal, so the tweaking process stops with a chain conformation with the lowest
energy dihedrals that are suitable for the requirements.

There is no discrete sampling applied in this dihedral refinement process,
the precision is only limited by the floating point representation of the computer.
Therefore the dihedral angle sampling of eHiTS is practically equivalent to
continuous (infinitesimally small) sampling.

Reconstruction and Optimization

When all the flexible chains have been fitted to the rigid fragment poses, the
complete ligand is reconstructed from the fragments.

Each hyper-graph clique defines a separate solution. Each solution is
constructed by pair-wise joining of the rigid fragments in the selected pose
with the flexible chains fitted to them. The mapped pose of each rigid fragment
and the resulting conformation of the flexible chain fitting are overlayed using
the two atoms that form the broken bond. These two atoms were replicated in
both the rigid fragment and the flexible chain, so they can be used to drive the
reconstruction.

The flexible chain fitting minimization process attempts to position the last
two atoms of the chain to overlay with the target rigid fragment, however, it is
not guaranteed that perfect (zero distance) match can be achieved. In other words,
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the join atoms on the rigid fragments and those on the flexible chain may have
different coordinates. Small transformations are carried out on the fragments to
achieve complete overlay of the join atoms prior to reassembly of the complete
ligand. This step ensures that all bond lengths and angles are maintained from the
input structure.

A continuous local energy minimization which only allows torsional changes
and rigid body transformations (rotations and translations) is applied to the
complete ligand to refine binding geometries and resolve any sampling roughness
from the initial polyhedron based rigid fragment positioning. A steepest descent
downhill optimization is applied on $6+n$ variables (where $n$ is the number
of rotatable bonds) to improve the scoring function value using the modified
Powell’s algorithm (21). The free variables of the optimization correspond to
3 degrees of translation, 3 degrees of rigid body rotation and $n$ degrees of
torsional conformation freedom.

The precision of atom positions obtained in this phase are not limited to any
discrete sampling, they are again limited only by the precision of the floating
point representation of the computer. The optimization is terminated when the
scoring function value does not improve in any direction in the $6+n$ dimensional
transformation space, i.e. local minimum is reached.

The objective function includes interaction scoring components between the
receptor and the ligand, as well as internal intra-molecular interaction components
within the ligand and conformational strain energy for the sub-optimal dihedral
angles. As a result, eHiTS is capable of generating strained dihedral angles, where
necessary, when compensated by the interaction energy - as observed in many
experimental crystal structures. However, the program will prefer the low energy
conformers when they are suitable for the docking pose.

There is no stochastic element in this applied optimization technique, because
the goal is to find a local minimum of the objective function for every particular
solution. The global coverage of the search space is guaranteed by the full cavity
coverage of the rigid fragment docking step and the exhaustive algorithm of the
pose matching step.

Protonation Handling

The issue of protonation state is very important to the docking problem.
Ligands and receptors with different protonation states can have dramatically
different binding poses. However, it is common practice for many docking
programs to ignore this issue and require that the user define a particular
protonation state prior to running a docking experiment.

Protonation states of ligands and receptors are determined by the interaction
between the two. Thus for any particular receptor-ligand pair there will generally
be one correct protonation state. However for a different ligand, the protonation
state of the receptor may be altered, to reflect the characteristics of the ligand. If a
docking program were to pre-set the protonation state of the receptor then possible
interactions with a ligand could be lost. Similarly, presetting the protonation
states of ligands in a library would produce incorrect results with respect to certain
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receptors. A better solution, with a more appropriate score, can be found only if
the program is run with various protonation states (not necessarily the neutral or
the normally lowest energy form of the receptor or ligand on its own or in solvent,
but the form required to reach the lowest energy for the complex).

The molecule in Figure 6 has 150 possible protonation states if all
combinations are considered for the 4 functional groups that may change
protonation states. Figure 7 shows the 5 possible protonation states for functionla
groups A and D, 2 for B and 3 for C, combined this leads to 5*5*2*3=150
different possible protonation states. Although, two pairs of states for A and
D can be considered equivalent via rotations about the bond to R (swapping
the roles of the 2 oxygen atoms), so a flexible docking program could work
using only 3 protonation states for those fragments giving a total of 3*3*2*3=54
instead of 150. Most docking programs would need to dock all 150 (or at least
54) combinations separately to evaluate the different possibilities, not even
considering different protonation states of the receptor.

Figure 6. Example ligand with multiple functional groups that may change
protonation state upon binding to a receptor site.

Figure 7. Possible protonation states of the functional groups A,B,C and D.
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eHiTS takes a unique approach to the protonation problem by systematically
evaluating all possible protonation states for both the receptor and ligand
efficiently in a single run. Ambiguous properties flags are assigned for positions
that could be either protonated or deprotonated (i.e. have a lone pair). Then
during the docking algorithm both states of such surface points are evaluated
and scored, selecting the best protonation state for each individual interaction
independently, thus avoiding the combinatorial effect of multiple functional
groups with variable protonation states. The results of a single eHiTS run using
the ambiguous properties flags contain the cummulative results that would be
achieved by running many individual docking runs with fixed protonation states
considering all ligand protonation states (150 in the above example) against all
receptor protonation states (usually an even higher number).

Scoring Function

Scoring functions in docking programs make assumptions and simplifications
in the effort to reach a balance between computational time and accuracy of the
results. Essentially there are three classes of scoring functions used in docking
programs (22, 23), force-field based, empirical, and knowledge based.

Overview of Different Scoring Approaches

Knowledge based (aka. statistical) scoring functions use statistics collected
from experimentally determined protein-ligand complexes to extract rules on
preferred and non-preferred atomic interactions. They are designed to reproduce
binding poses rather than binding energies. Rules are interpreted as pair-potentials
that are subsequently used to score ligand binding poses. Common examples
of knowledge based scoring functions include PMF (24–27), DrugScore (28),
SoftScore (29), PAS-Dock (30) and SmoG (31).

Empirical scoring functions consist of the sum of a set of parameterized
functions with weights and parameters set to reproduce experimental data, such
as binding energies or conformations. The idea is that binding energies can be
approximated by a sum of individual uncorrelated terms. The weights of these
terms are assigned by regression methods that are used to fit the experimentally
determined values found in a training set of protein-ligand complexes. The
interaction terms typically have some physical meaning, such as Van der Waals,
electorstatics interactions and hydrogen bonds. ChemScore (32, 33), LUDI (34),
SCORE (35), X-Score (36), GlideScore (37), FlexX (7) F-Score (7), PLP (38–40),
SlideScore (41), LigScore (42) and Fresno (43) are all examples of empirical
scoring functions.

Force-field based scoring functions are similar to empirical scoring functions,
in that they attempt to predict binding energies of ligands by adding individual
contributions from different types of interactions. However, force-field based
scoring functions use interaction terms derived from physical chemical phenomena
as opposed to experimental affinities. Some examples of force-field based scoring
functions include D-Score, G-score (44), GoldScore (4), AutoDock (45), Glide-
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Emodel (46) and DOCK Energy (11, 47, 48). These methods rely heavily on
correct assignments of partial charge values, which itself is a rather non-trivial
task (49–51) therefore Shoichet’s group has employed a finite-difference Poisson-
Boltzmann approach to model electrostatic potential (52–54).

Many reviews have been published on the use of various scoring functions
in docking programs (55–63). The general consensus is that there is currently no
universal scoring function that works well across a wide range of protein families
and structurally diverse set of ligands.

A new scoring function has been developed with a unique approach to
combine the strengths of the statistical and empirical scoring functions. First,
an overview of the new scoring method is presented, then the next sub-section
describes how statistical information is collected from a large number of crystal
structures considering the full distribution of interaction geometries as described
by the temperature factors associated with every atom in the crystal structures.
Section “Fitting empirical functions to the statistical data” describes how
empirical functions are derived from the statistical data to define the final scoring
function terms. Validation results are presented in the subsequent section to
evaluate the pose ranking and binding energy prediction capabilities of the new
scoring function.

The eHiTS Scoring Function

The knowledge based (statistical) scoring functions associate energy with
the probability of various interaction patterns based on the Boltzman principle
(64). Some methods consider only heavy atom distances when collecting the
statistics. However positions of hydrogen atoms and directionality is well known
to be crucial factors determining the strength of hydrogen bonding interactions.
Therefore, it is desireable to collect more detailed geometric information including
angles (directionality) and try to determine the probability of various geometric
arrangements. Empirical functions typically include angular dependency in their
hydrogen bonding terms.

Directionality may also change the nature of the preferred interaction by the
same heavy atom. Let’s consider a nitrogen atom in an aromatic ring system. The
atom presents a strongly polar, hydrogen bonding activity at the edge of the ring,
along the direction of its lone electron pair or attached hydrogen atom (one or the
other depending on protonation state). Perpendicular to that direction, i.e. above
and below the plane of the aromatic ring, the same atom presents a hydrophobic
and aromatic π stacking interaction activity.

In order to capture such differences in the scoring function, it was decided
that specific interacting surface points (ISP) along with their normal vectors will
be used to express the interactions instead of the heavy atom positions. Instead
of atom types, the various interaction patterns are categorized based on the set
of surface point types listed in Table 2. The surface points are placed on the
van der Waals surface of the corresponding heavy atom along the direction of
the interaction, e.g. in the direction of the hydrogen atom attached or the central
direction of the space occupied by a lone electron pair. In case of a π electron (e.g.
ISP-type AromP) the direction is choosen to be perpendicular to the plane of the
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$sp^2$ hybridized electron pairs, e.g. above and below the plane of an aromatic
ring. There is an associated direction for each ISP, which is the normal vector of
the van der Waals sphere at the given point, i.e. the direction from the heavy atom
center towards the ISP.

Table 2. Interaction Surface point type (ISP-type) definitions used in the
eHiTS scoring function

ISP-type Definition

Metal positively charged metal ion interaction point

DonH+ positively charged hydrogen bond donor, e.g. Arginine

Amine primary amine hydrogen/lone-pair, e.g. -NH2

Don-H strong (primary) hydrogen bond donor H (polar-atom-H)

WSdon weak (secondary) hydrogen bond donor H (polarized C-H)

PO3- lone pair of negatively charged group

AcidL lone pair of an acidic functional group, e.g. carboxylate

AccLp strong (primary) hydrogen bond acceptor lone pair

WS-Lp weak (secondary) hydrogen bond acceptor lone pair

Ambiv donor H or acceptor Lp depending on protonation state

Rot-H rotatable-hydroxy donor H

RotLp rotatable-hydroxy acceptor Lp

Lipo H on sp3 hydrophobic carbon

AromH H on hydrophobic carbon in aromatic ring (non-polarized)

WSlip H on weak secondary hydrophobic atom (e.g. carbon next to polar)

Neutr H/Lp on neutral atom (no recognized activity)

AromP π electron of an aromatic ring

Res+- π electron on polar atom (N/O) in resonance chain, e.g. amide

Res-C π electron on carbon atom in resonance chain, e.g. amide

Sp2+- π electron on sp2 polar atom (N/O) (non-resonating, non-aromatic)

Sp2-C π electron on sp2 carbon atom (non-resonating, non-aromatic)

Halog lone electron pair of a halogen atom (F,Cl,I,Br)

Sulfu lone electron pair of a sulfur atom
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The interaction geometry between a ligand and a receptor ISP is fully
described by four parameters (65), see Figure 8 below:

• the distance between the two surface points: d
• the angle between the normal vector of the ligand ISP and the axis

connecting the two surface points: α
• the angle between the normal vector of the receptor ISP and the axis

connecting the two surface points: β
• the torsion angle (dihedral) between the two normal vectors along the

heavy atom axis: δ

The distance and one angle parameter is typically included in the hydrogen
bonding term of most empirical scoring functions as well as force fields. Using
a single hydrogen bonding angle in the term expresses the importance of the
hydrogen directionality while ignoring lone pair directionality, however a recent
study (66) demonstrated that the later is also important.

For sake of generality, all four geometric parameters are used between
any two types of ISP in the scoring function, even though, it is likely that
some interaction types (e.g. hydrophobic) do not have significant dependence
on the directionality. The actual shape of the geometric dependence function
is determined by the statistical data, therefore directionality is not artificially
enforced, but simply dictated by the observed data if it is applicable to a given
pair of ISP-types.

Figure 8. The four values that describe the geometry of a hydrogen bond.
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Statistical Data Collection

Interaction geometry statistics has been collected from a set of nearly 2500
high resolution (less than 2.5Å) crystal structures of protein-ligand complexes
from the RCSB Protein Data Bank (PDB). The set of complexes (PDB codes)
contain the list published in the PDB-bind (67) database (1091 codes) for which
experimental binding energy is also available. The set also contains the PDB codes
from the published Astex validation set (68). The ligands in these sets are available
in separate files in mol2 format, thus it can be verified that the correct ligand
and corresponding binding site is identified by the split utility of eHiTS from the
PDB complex. The proteins have been clustered into families based on residue
motifs that appear in the binding sites. At least 5 residues match within each
family including the distances between the alpha carbons of the residues within
3.0Å tolerance. This clustering method has identified 97 protein families in the
set and several hundred singletons that did not match up with any other protein.
Then each identified family has been extended from the rest of the PDB using only
complexes where the ligand matched all the Lipinski rules for drug likeness (69)
and the crystal resolution was within the 2.5Å limit.

In standard PDB files, there is a temperature factor (B) associated with the
position of each atom. That factor correlates to the probability of that atom having
the stated coordinates. The atomic coordinates stated in a PDB file are an average
of all “observed” poses and conformers of the protein in the crystal. Each atom
may have a slightly different position in each copy of the protein within the crystal.
The temperature factor is an indication of how much the atom varies from the
mean. Some have a very precisely confined position, while others are more loosely
defined. If statistics were collected ignoring the temperature factor information
and all atom coordinates were treated as equally significant, then the data would
have been misinterpreted failing to take advantage of all the information provided.
For statistics collection on, for example, H-bond geometries, it is very important to
recognize which arrangements are well defined with low temperature factors and
which geometries are mere averages of wide variations. Some geometries occur
with high frequency, but if they always occur with high temperature factors, then
it does not mean that the specific geometry is really preferred. Imagine a situation
where two geometric arrangements are equally likely (e.g. due to two different
protonation states) one with a separation distance of 2.8Å and another with a
separation distance of 3.6Å. The PDB complex file may contain themean position
of the atom at a separation distance of 3.2Å which never actually happens in any
of the real structures (because it is impossible to have a corresponding “middle”
protonation state that would allow that geometry) and so the position considered
would have an error of 0.4Å from any feasible, realistic structure. Therefore, it
is very important to interpret the crystal structure data as the mean position of
a Gaussian probability distribution curve along with the temperature factor that
indicates the shape of the curve (70). In the given example, the shape of the curve
would be flat indicating that the real 3D positions are just as likely as the average
position in between - which is still not the true picture, but at least it is much
closer to it and the correct position is also considered in the statistics in addition to
the artificial average. Furthermore, the probability of the artificial (fake) average
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position is significantly lower than the probability of another interaction where
no such ambiguity occurs. The complete 3D density distribution could be better
described by Anisotropic Temperature Factors (71), however such data is typically
not available in standard PDB files.

Based on the assumed Gaussian distribution of atom positions, the probability
of displacement u (in any direction) at temperature factor B from the given mean
position is (72):

From this, we can express the probability of an atom being on a sphere surface
at given radius d around the mean position using an integral on the sphere surface
A, which can be computed using spherical coordinate system (α planar angle and
β azimuth for a spheric point (xs,ys,zs)):

The determinant of the partial derivates can be easily computed and the
probability function for the displacement substituted, so the probability is
expressed as:
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Let us introduce the following auxilary notations to simplify the forthcoming
formulae:

Using the above equations and notations, the probability of a given pair of
interacting atoms (with mean positions (x0,y0,z0) and (x1,y1,z1), temperature factors
B0 and B1 respectively) being at a distance d can be expressed via the following
volumetric integral:

The volumetric integral can be expressed as three independent coordinate
integrals from negative to positive infinity on x,y,z. The constants F0 and F1 can
be brought outside the integrals, and the integration order can be changed, so that
the following integration fact can be used via variable substitution:
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Let us reorder the integration so that the integral on variable x is the innermost
and factor out everything that is not dependent on x from the integral

(Let F= F0 F1 d2):

Using similar rearrangament and substitution steps for variable y and z, the
closed form of their integrals can also be computed, so that we can express P(d)
with only 2 integrals on variables α and β with the constant expressions simplified
to the form:

Where P0=(x0,y0,z0) is the mean position of the first atom with temperature
factor B0, P1=(x1,y1,z1) is the mean position of the second atom with temperature
factor B1 and Ps=(xs,ys,zs) is a point of a sphere with radius d identified by spheric
coordinates α and β as given in the earlier equations.

Similarly, the probability of interactions to occur at given angle and dihedral
parameter values can also be expressed with volumetric integrals considering
the Gaussian probability distribution of the atom positions according to the
temperature factors given.

The statistics collection was performed on all pairs of interacting atoms from
the nearly 2500 protein ligand complexes. There are several hundred interacting
atom pairs in each complex giving rise to more than a million interactions in
total. For each ISP pair, a four dimensional probability array was accumulated by
evaluating the volumetric integrals for every possible parameter quadraple value
set (distance, 2 angles and a dihedral) within the full range of angle values and
distance values ranging from zero to 5.6Å using a fine resolution sampling for the
numeric integration.

115

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n 
Ju

ne
 2

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 S

ep
te

m
be

r 
30

, 2
01

1 
| d

oi
: 1

0.
10

21
/b

k-
20

11
-1

07
6.

ch
00

6

In Library Design, Search Methods, and Applications of Fragment-Based Drug Design; Bienstock, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2011. 



Fitting Empirical Functions to the Statistical Data

The four dimensional probability array accumulated from the observed
experimental data defines the shape of the geometric dependency functions for
any given ISP-type pair. However, using the accumulated data directly for scoring
is impractical for both memory and CPU resource requirement reasons, i.e. the
data tables are too large to fit into physical memory and the lookup process would
require expensive interpolations on the 4D array cells.

Many graphical plots of the collected data were examined and various
statistical analysis techniques were applied, then it was determined that the data
can be approximated with relatively simple analytical functions. The following
parameterized formula was chosen to represent the geometric dependency terms
of the interactions in the eHiTS scoring function:

In the above scoring function formula, e0 is the energy coefficient for the
given interaction, which depends on the pair of ISP-types that participate in the
interaction, while parameters p0,...,p19 are fitted to reproduce the accumulated
statistical probability data as closely as possible. The fitting process was carried
out using a simulated annealing method combined with a simplex minimizer (21)
and followed by a modified Powell local minimizer.

The values for the energy coefficient e0 in the ISP-type matrix has been
determined based on the Boltzmann principle, i.e. the ratio of observed
interactions versus the probability of such interaction occurring by random
placement of the atoms is calculated, then the Maxwell-Boltzmann exponential
distribution function was used to convert the probability into energy value.
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The pairwise interactions between interacting surface points (ISP) are scored
using the empirical function g(d,α,β,δ) which is dependent on the four variables
that describe the interaction geometry as shown in Figure 8. The score is
accumulated by summation over all interacting point pairs including all types of
interactions listed in Table 2:

Additional Terms of the Scoring Function

The above described interaction scoring terms account for all kinds of
interactions between the receptor and the ligand, including hydrogen bonding,
metal ion interactions, hydrophobic interactions, aromatic π stacking, etc.
However, the eHiTS scoring function also contains additional terms to account
for de-solvation effects, steric clashes, topological positioning of the ligand
in the binding pocket, entropy effects, ligand conformation strain energy and
intramolecular interactions within the ligand. The calculation methods of these
additional terms are described in this section.

De-Solvation Term

The de-solvation term of the eHiTS scoring function is based on a continuous
solvation model. It is assumed that each ISP was interacting with a solvent water
molecule prior to complex formation, thus a solvent interaction energy value can
be associated with each surface point. To form the receptor-ligand complex, de-
solvation of both molecules had to occur thus the energy components representing
the solvent interactions should be removed, i.e. subtracted from the total score:

The function esolv(t) associates a different constant energy value with each ISP
type, i.e. it is recognized that different solvation energy corresponds to different
surface point types. For example, polar and hydrogen bonding ISP types would
have a favourable interaction with solvent water while hydrophobic ISP types
would have an energy constant with opposite sign representing unfavourable
interaction.

The solvation energy constants per ISP type were also determined using the
Bolztmann formula based on statistics collection of the ISP occurances that are
exposed to solvent in the protein ligand complexes. The total number of surface
points of each type was counted, as well as the number of solvent exposed surface
points of each type. The ratio of exposed counts versus the total counts reflects the
probability of a certain type of surface point being exposed which is then converted
into energy value based on the Boltzmann formula.
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Van der Waals Term

The usual Lennard-Jones 6-12 potential is used to estimate the van der Waals
energy term between receptor and ligand atoms (where ra and rb refers to the van
der Waals radii of atoms a and b respectively):

Due to approximations in docking pose generation and imprecisions in
crystallographic data, the repulsive term of the 6-12 potential can be prohibitively
overwhelming, limiting the practical use of the scoring function to clean,
well optimised structure complexes. This limitation can be overcome by the
application of cut-off value on the Evdw component and the use of a less prohibitive
steric clash penalty function. A zero cut-off has been chosen for the van der Waals
term thus limiting its meaning to attractive contribution. The repulsive effects of
too close contacts are handled by a separate term described below.

Steric Clash Penalty Term

One problem with the repulsive term of the Lennard-Jones 6-12 potential
is explained above, i.e. it is too steep and easily overwhelms all other score
components even for relatively small steric clashes that may occur in docking
poses due to approximate placements as well as in X-ray crystallographic data
due to poor resolution of the experimental data. This problem could be solved by
using a function potential with a lower power, e.g. Cubic or quadratic.

A second problem is the large number of local minima generated by the
repulsive term of the Lennard-Jones 6-12 potential due to the spatial arrangement
of receptor atoms. It is a simple mathematical fact, that every 4 receptor atoms
that are not co-planar would generate a local minimum at the center of the
tetrahedron formed by the 4 atoms. An average protein structure in the PDB
consists of over 4000 heavy atoms, picking a random 4 of them is most likely not
coplanar and there are

ways to pick 4 out of 4000. Consequently, such potential generates several
trillions of local minima in the scoring function landscape which makes local
energy minimization (to find the optimal pose with the best scoring function
value) practically hopeless, i.e. equivalent to random trial and error search in a
vast space.
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To eliminate both problems at once, steric clash term of the eHiTS scoring
function uses the distance-square from the Connolly surface (C) of the receptor:

Mathematically, this function has infinite number of local minima, since all
points without steric violation have the minimum value of zero (which is also the
global minimum). However, all the minimum points form a single continuous
region (the binding pocket) for most practical cases, thus it can be considered as
a single minimum (not a point but a 3D region). The main advantage of this type
of clash function is that for any ligand atom position that has steric violation, the
gradient of the penalty function points towards the closest point of the Connolly
surface where the violation can be resolved with the smallest amount of atom
movement, thus it helps to direct the local minimisation process to resolve all
violations.

In contrast, the repulsion term of the Lennard-Jones 6-12 potential can “trap”
atoms if the steric violation is so severe that the ligand atom centre moves beyond
the plane of 3 receptor atoms in close vicinity.

Pocket Depth Term

Typically many docking poses are generated by eHiTS, some of them deep
inside the binding pocket while others are binding on the outer surface or shallow
indentations of the receptor. It has been observed that other scoring terms are often
not able to distinguish the correct deep binding pose from some of the well scoring
surface binding poses. Therefore, another scoring term was introduced to reflect
the topology of the ligand binding pose with respect to the pocket depth.

The surface $H$ in the formula above represents the convex hull of the
receptor (protein) structure.

Family Coverage Term

Statistical information is collected per protein family during protein family
based training (see next subsection for details). The information includes data
about surface point type coverage pattern, i.e. what percentage of various ligand
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surface point types are interacting with each receptor surface point type. This
statistical information is used in scoring to compute the family coverage term:

This scoring component is ignored (has a value of zero) if the protein receptor
is not recognised as belonging to any of the trained protein families.

Ligand Strain Energy Term

There is substantial statistical evidence (15–17) that ligands often bind in
conformations that differ significantly from the lowest energy conformation of the
unbound ligand (either in vacum or in aquaous solution). The docking engine of
eHiTS is capable of generating practically any conformation necessary to satisfy
the goal interactions picked by the rigid fragment docking phase. However, the
scoring function must account for the energy penalty (strain energy) associated
with any given conformation during the final local minimisation phase (which
alters the conformation of the ligand) as well as the strain energy of the final
docking pose:

The function dih(b), which determines the strain energy of the dihedral angle
of the bond b is also based on statistical data collected from the Protein DataBank
(PDB) (73,74). All bound ligand conformations of the PDB has been analyzed to
collect statistics on the dihedral angles of single rotatable bonds. Data has been
clustered considering the hybridisation states of the atoms at the end of the bond as
well as the number and type of heavy atom neighbours of the atoms. Within each
cluster, the dihedral angle with the highest occurance frequency is considered to
have the lowest energy (ground state). Strain energy for other dihedrals is assigned
based on the frequency ratio between the given dihedral and the most frequent one
again using the Boltzmann formula to convert probability into energy value.

The formula for Estrain in the previous equation contains the base energy Ebase
for the ligand, because the two sums would not yield a zero value for the lowest
energy conformation of the ligand. The score component needs to be adjusted to
establish a zero baseline for the term, otherwise weighting of the term relative to
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the other components in the full scoring function becomes dependent on the actual
ligand structure. To establish the value of Ebase for each ligand, several hundred
conformations are generated by systematically sampling the conformational space
usingmultiple low energy dihedral values (e.g. considering gauche dihedral angles
in addition to staggered ones), then a local minimisation is performed from each
generated conformation, with a goal function similar to the strain equation, except
omitting the Ebase term. The lowest energy found by this search is chosen for the
value of Ebase for the given ligand. This procedure is executed once for each ligand
during the preprocessing phase, then the computed Ebase value is used for scoring
of various docking poses during the eHiTS pose generation and final optimisation.

Ligand Intra-Molecular interactions

Intra-molecular interaction may occur in certain conformations of bound
ligands. Such interactions can stabilise the conformation and contribute to the
total energy of the protein-ligand complex, therefore it is important to consider
them in the scoring function. The eHiTS scoring function contains a term Eint for
this purpose, and it is computed the same way as the receptor-ligand interaction
term, except that both ISPs are taken from the ligand in the sum.

Ligand Entropy Term

The binding free energy of the protein ligand complex is by definition the
difference between the total energy of the complex and the sum of the energy of the
receptor and ligand in solution. However, all of these energy terms consist of two
components: enthalpy and entropy. So far, all the scoring function terms described
deal with the enthalpy component, but we also need to consider the change of
entropy upon binding. The entropy change of the ligand can be attributed mostly
to the loss of entropy upon binding due to freezing of freely rotatable single bonds
in the ligand:

Currently, the eHiTS scoring function uses a simple constant value for
erot, although the real entropy loss may vary for various rotatable bonds due to
conformational constrains. Furthermore, not every rotatable bond is necessarily
fully frozen upon binding, partial or even full freedom of movement may remain
for some of the rotatable bonds.

The entropy change of the protein receptor is much harder to estimate
and would require costly entropy analysis of both the bound and unbound
conformations. There is no scoring term in the eHiTS scoring function to estimate
the entropy change of the receptor.
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Protein Family Recognition and Clustering

There is a component (Efamily) in the eHiTS scoring function that requires
the recognition of the protein family that the receptor structure belongs to. The
protein family classification is automated in eHiTS and is based on the geometric
pattern of residues at the active site. The amino acid type of the protein residues
forming the active site is collected for every protein and the 3D coordinates of
the center of mass of each residue is used to compute a distance matrix between
the participating residues. Clustering of proteins into families is performed based
on the similarity of the distance matrices. The minimum criteria for two proteins
to fall into the same family is to have at least 5 residues with all their pairwise
distances compatible, the tolerance for the distance difference is 3.0Å. There are
two control parameters for the clustering:

• number of residues required to match within a family (default 5)
• tolerance for the distance difference between residue pairs (3.0Å)

Choosing different values for these two parameters yields different number
of families as a result of clustering and the population of the families also varies.
A large range of values have been tested for both parameters and the clustering
results were analyzed with respect to the categorization stated in the comment
and header sections of the PDB entries. The mentioned default values (5 and
3.0Å respectively) were chosen, because these values result in clusters with close
agreement with the stated classification.

The family knowledge base has been prepared based on about 2500 PDB
codes, yielding 97 distinct families with at least 5 members in each family.
There were also 349 singletons that did not fit any of the identified families
and did not form large enough clusters to designate them as additional families.
When the eHiTS software is run for a given protein receptor, the family of the
receptor is determined by the same procedure as the clustering was performed,
i.e. The residues at the active site surface are identified and their distance matrix
is computed. The distance matrix is checked against the matrices stored in the
family knowledge base. If a match is found according to the parameters, then the
family is recognized and the corresponding statistical data and weight set will
be used for the scoring. Otherwise the global weight set is used which has zero
weight associated with the Efamily term.

Tuning the Weight Parameters

The full scoring function is composed as a weighted sum of the statistically
derived empirical interaction term and the various other terms detailed in the
previous section:
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The weights w0,...,w8 are tuned so that the resulting value of E corresponds
to an estimated binding affinity log(Ki) value. The tuning could be performed
using simple linear regression technique to fit the score of X-ray ligand poses to
experimentallymeasured binding affinity data. However, the purpose of the eHiTS
scoring function is to evaluate large number of docking poses of a ligand and select
the best pose in addition to providing a binding energy estimate that can be used for
screening ligand databases. Furthermore, the scoring function is also driving the
local optimisation of the solution poses and conformations in the final phase of the
eHiTS docking system. Therefore, the weight set should be optimised considering
all of the following goals:

1. Local minimisation on the scoring function of a set of poses generated
within a small RMSD radius around the X-ray pose should converge to
single location as close as possible to the X-ray pose, i.e. the scoring
function should have a funnel shape with a local minimum near the X-ray
pose.

2. When all the optimized solution poses are ranked by the scoring function,
the best pose should have as small RMSD as possible from the X-ray
pose of the ligand, i.e. the scoring function should be able to identify the
correct pose.

3. The score value (of the X-ray pose) should have a good correlation with
the experimental binding energy.

4. The score values generated for known active ligands should be superior
to the score values of docked inactive ligands (decoys).

If the weight values are tuned specifically for any of the listed four goals,
they will usually not yield good results from the perspectives of the other goals.
Therefore, the weight tuning procedure has to consider all objectives at once, i.e.
the goal function of the weight tuning must include terms to reflect each of the
above listed goals. The correlation requirement is the only one easily expressed
with linear function, but the others (e.g. with the RMSD requirements) are
inherently nonlinear. Therefore, instead of the linear regression technique, the
modified Powell optimisation engine was selected to perform the weight tuning.
A stochastic method based on simulated annealing was also tested but it did not
produce better results than the Powell engine and the run time was considerably
longer.

The tuning was performed once for all the 2500 PDB codes together to
generate the default (global) weight set, then separate weight tuning runs were
performed for all identified 97 protein families individually. Not all training data
provide equally valuable information, because of variations in crystallographic
resolution as well as experimental binding energy. Furthermore, some of the
ligands are drug-like according to the Lipinski rules of 5 (about 60% of the data),
while others are not likely to be of interest to the pharmaceutical industry. An
importance weight was associated with each PDB code in the training data to
reflect these differences.
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Results

To test the accuracy of the pose generation engine and the ability of the scoring
function to recognise the correct pose, the Astex diverse validation set (68) was
chosen, which contains a single representative PDB complex for each protein
family covered by the set. This set is also filtered for crystallographic accuracy,
therefore the data can be considered more reliable than a random subset of the
PDB.

It is important to note that no manual preprocessing was performed on any
of the selected PDB complexes. The protonation states, cofactors, counter-ions,
solvent molecules, partial charge assignment, etc. were all handled by eHiTS
without user intervention. This automation makes eHiTS very user-friendly and
capable of automated processing.

The ligands were docked into the original protein binding site (as provided in
the X-ray structure) and the accuracy was measured by calculating the root-mean-
squared deviation (RMSD) between the coordinates of the heavy atoms of the
ligand in the eHiTS docked pose and those in the crystal structure. The results are
summarized in Figure 9, which shows a receiver operating characteristic (ROC)
type of curve corresponding to the success rate achieved: the X axis corresponds
to the RMSD accuracy values, and the plot shows the success rate in percentage
on the Y axis. The higher curve shows the success rate of the pose closest to the
X-ray structure out of the 32 generated output poses, while the lower curve shows
the success rate of the top-ranked pose. A typical cut-off value for successful pose
generation is considered to be 2Å. The top-rank pose is within 2Å for 85% of the
cases, while the closest is for 95%.

Figure 9. RMSD-success rate curve on the Astex diverse 85 set.
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Enrichment Results

The most practical use of the docking methods is for virtual screening of large
libraries of ligands. The screening performance of the docking/scoring protocols
is often expressed as the enrichment of actives in a selected portion of the database,
or the percentage of known actives found in the top few percent of the ranked list
of all ligands. These numbers do not provide comparable absolute measures, but
highly dependent on the actual data set. We have measured eHiTS performance on
2 published datasets. Figure 10 shows the screening results of eHiTS for the data
set published by Hongming Chen et.al. (73) – the publication reports results of
7 other screening techniques with average enrichment factors ranging from 1.44
(Gold) to 7.43 (ICM). The average enrichment factor produced by eHiTS on the
same dataset is 7.56, i.e. Better than all the reported methods.

The results of eHiTS on the published Surflex data set are shown in Figure
11. This dataset contains 869 decoys plus actives specific for each family (ranging
from 5 to 20 molecules). The results show a remarkable enrichment across a wide
range of receptor families with an average recovery rate of ~80% of all actives in
the top 10% of the ranked database.

Figure 10. Enrichment results on Hongming Chen et.al. (73) data.
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Figure 11. Enrichment results in the Surflex data set.

Correlation with Experimental Binding Energy

One of the most important measure of success for a scoring is the correlation
between the calculated score value and the experimental binding energy. It is also
the most difficult aspect of scoring. Table 3 contains the results for various test
data sets: untrained data for comparison base-line, results of all data after global
training, results of splitting the data into disjunct training set and test set. There is
an additional line (Xray optimised) that corresponds to the result obtained when
the training is done purely for this measure, i.e. the goal function is limited to
optimizing the correlation and ignore the other 3 aims. In this case, significantly
better correlation can be achieved, but the weight set obtained this way is less
suitable for use in the docking software. The last column of the table reports the
root mean square error of the estimate in pKi units.

Figure 12 shows a scatter plot of experimental binding affinity versus scores
of docked poses and X-ray ligand pose as a result of global training with all
four goal components considered (funnel shape, ranking ability, correlation and
enrichment). The X-ray ligand pose data of the plot corresponds to the second
data line of Table 3.

Table 3. Correlation of score values and the experimental binding energy

Test data set Correlation (R) Error (rms)

All untrained X-ray 0.122 6.157

All trained X-ray 0.539 2.233

Training set (half of cases) X-ray 0.564 2.297

Cross validation set X-ray 0.511 2.431

Xray optimised 0.751 1.613

126

D
ow

nl
oa

de
d 

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n 
Ju

ne
 2

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 S

ep
te

m
be

r 
30

, 2
01

1 
| d

oi
: 1

0.
10

21
/b

k-
20

11
-1

07
6.

ch
00

6

In Library Design, Search Methods, and Applications of Fragment-Based Drug Design; Bienstock, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2011. 



Figure 12. Correlation of eHiTS-score with experimental binding data.

Conclusions

The eHiTS flexible ligand docking engine has been described along with a
new statistical based scoring function. The search engine is based on exhaustive
positioning and then re-linking of rigid fragments that often correspond to
chemical functional groups. This approach provides the means to achieve
computationally feasible complete search of the conformational and pose space
with sufficient resolution, providing high accuracy.

The presented scoring function is capable of selecting a good representative
pose from the generated candidates, although not always the best. It is also capable
of identifying active compounds, leading to good enrichment. However, accurate
estimation of the binding free energies remains a challenging problem, needing
further research and improvements.
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Chapter 7

Fragment-Based High-Throughput Docking
and Library Tailoring

Peter Kolb*

Department of Pharmaceutical Chemistry, University of California,
San Francisco, San Francisco, CA 94158

*E-mail: kolb@docking.org

Fragments, i.e. small and simple molecules, have garnered a
lot of attention in recent years. They are not only promising
starting compounds in biochemical and biophysical assays,
but also lend themselves to the development of novel concepts
in computational chemistry. The key advantage of fragments
in this area is that they can be treated at relatively low
computational cost. Among the novel concepts, fragment-based
docking is one of the most successful ones. It uses the poses of
fragments that have been obtained by decomposing molecules
to guide the placement of the entire molecule. This strategy
leads to high complementarity between all the subunits of a
molecule and the receptor. Along the same lines, anchor-based
library tailoring has been developed. This method reduces
the size of a molecular library by keeping only molecules
containing a fragment that interacts favorably with the receptor
upon docking. This chapter will describe all techniques in more
detail and highlight the most important applications.

Introduction

Contrary to the most common use of the term these days, this chapter will for
most part use an alternative definition of “fragment”. Usually, this term refers
to small molecular entities with a molecular weight below 250 g/mol and less
than three hydrogen bond donors and acceptors, respectively (1). This subset of
chemical compounds has been investigated more and more in recent years, due
to attractive features such as an increased likelihood to bind to a receptor (2) and

© 2011 American Chemical Society
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more complete coverage of chemical space on the level of fragments (3, 4). On
the other hand, fragments can be defined as parts – or subgraphs – of molecules.
It makes sense to think about drug-sized molecules in terms of their constituting
fragments, as the latter are much easier to treat computationally because they are
less flexible and less complex. For years, organic chemists have generated this
kind of fragments by hand when they tried to determine the building blocks of
molecules. Computers have more and more taken over this task and fragment
molecules by applying certain rules to determine which bonds to cut (5). For
the remainder of this text, “fragments” will refer to these (computer-generated)
molecule parts. This chapter is organized as follows: first, I will describe DAIM,
a software that has been developed to decomposemolecules, and reflect on some of
the potential applications; then the various software that has been written in order
to process and dock drug-sized molecules using their fragments as anchors will be
described; third, I will detail the fragment-based library tailoring procedure that we
have developed; and finally, some applications of the method will be higlighted.

Computational Fragment Generation

DAIM

DAIM (Decomposition and Identification of Molecules) is a computer
program to automatically and specifically fragment chemical compounds into
their constitutive small components (6). Its original purpose was to obtain small,
rigid fragments to be docked with the program SEED (7, 8) (Solvation Energy for
Exhaustive Docking; described in the next chapter). This is also reflected in the
original basic set of rules that was created to obtain fragments with few, if any,
internal degrees of freedom (6).

Decomposition Rules

The decomposition of a molecule proceeds in four phases (Figure 1):
ring identification, initial fragment definition, functional group merging, and
completion of valences.

(i) Ring identification. Rings are identified by a modified breadth-first
search. All neighbors, i.e. directly covalently bound atoms are enumerated and
a neighbor with an already assigned number indicates a ring closure, with the
corresponding ring size being the sum of the order numbers of the two atoms. (ii)
Initial fragment definition. A fragment is defined as a set of atoms connected by
unbreakable bonds. The basic definition of unbreakable bonds includes terminal,
double, triple, and aromatic bonds and bonds in rings. In the original study
(6), an extended definition of unbreakable bonds was used since with the basic
definition single bonds of groups that form chemical entities would be cut (e.g.,
in a sulfonamide group, the bond between sulfur and nitrogen is formally a single
bond and would thus be cut). This extended list includes amide, phosphate group,
and sulfonamide bonds, as well as the single bonds in conjugated systems, and
the single bond connecting an amidine group. (iii) Functional group merging.
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To form chemically relevant fragments and avoid the generation of many small
groups, simple functional groups (e.g., -OH, -CH3, -CX3 [where X can be any
halogen], -SO3, -CHO, -NO2, -NH2, and -SH) are merged with the fragment they
are connected to. Unbreakable bonds and functional groups (points ii and iii,
respectively) can be defined by the user. (iv) Completion of valences. In the final
step, missing atom neighbors are added. An atom will lack a neighbor atom where
the bond connecting them has been cut. These missing neighbors are replaced
by hydrogen atoms to reconstitute the correct valence for every atom. A methyl
group is used to fill valences where a hydrogen atom would result in an unwanted
additional hydrogen bond direction (e.g., a hydrogen replacing a carbon atom
bound to an sp3 nitrogen).

Figure 1. Compound 1 of reference (9) is used as an example of a DAIM
decomposition and triplet selection. (Top) Compound 1 is shown with the
covalent bonds that are cut by DAIM marked with cross lines. (Middle) The
fragments identified by DAIM are shown together with their DAIM fingerprints
and chemical richness ρχ. Note that ρχ is evaluated by summing over all values
in the fingerprint but neglecting hydrogen atoms or CH3 groups added by
DAIM (e.g., the CH3 group on the nitrogen of the morpholine in fragment

7). (Bottom) The fragment triplet suggested for docking by DAIM is shown in
color. The trisubstituted benzene is considered “central” and is not suggested as
anchor. Curly arrows denote rotatable bonds. Reproduced with permission from

reference (6). Copyright 2006 American Chemical Society.
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Comparison to Manual Decomposition

It is interesting to compare the compositions of two libraries on the fragment
level. In that way, it becomes apparent whether the two libraries originate from
the same set of building blocks and represent only different ways of connecting
them or whether the libraries are genuinely different in terms of fragment
chemotypes. We did this analysis for a set of 1.85 million unique molecules
from the ZINC 2005 (10) database of compounds and compared the resulting
fragments and their frequencies with the well-known study on drugs by Bemis
and Murcko (11, 12). Of course, the two libraries are based on somewhat
different assumptions: ZINC is an unbiased collection of small molecules for
the purpose of virtual screening; many of the compounds therein do not have
pharmaceutically favorable properties. On the other hand, the MDDR (MDL
Drug Data Report) set used in (11, 12) consists of all the approved drugs at that
time. Yet, the comparison is still meaningful as the promise of ZINC is that it
contains lead molecules that might lateron be developed into drugs. The second
difference is that Bemis and Murcko used somewhat different decomposition
rules by ignoring element types and treating the molecules as graphs. As an
example, DAIM will always separate rings connected by a linker, whereas they
are treated as one scaffold (“framework”) in reference (11) (e.g., benzylbenzene,
the third most frequent framework in known drugs [frequency of 68/5120] is
decomposed into two benzene rings by DAIM). It is then not surprising that
benzene, which is the most frequent fragment in both databases, has a much larger
frequency in ZINC (42.2%) than in known drugs (8.5%) (6). When one looks at
less common fragments like naphthalene and pyridine, it turns out that they have
comparable frequencies (1.88% and 3.66%, respectively, in ZINC and 0.59% and
0.82% in the known drugs (6)). The most important difference between ZINC
and the known drugs is the occurrence of aromatic heterocyclic five-rings: there
is only one such scaffold among the 41 most frequent frameworks in known
drugs (imidazole, frequency of 19/5120) whereas ZINC contains three such rings
with a frequency of ≥ 1%. Conversely, the subset of ZINC that we used lacks
steroid-derived scaffolds, despite the fact that there are five among the 41 most
frequent frameworks in known drugs. The situation is different for the acyclic
fragments (“side chains” in (12)) and the overlap between types and frequencies
between the DAIM-generated fragments and the ones obtained by Bemis and
Murcko is much larger (6). It can be speculated that this similarity originates
from the facile synthetic accessibility of certain functional groups, and thus is
characteristic of synthesized compounds. In summary, despite the differences
between the DAIM decomposition and the approach used in the previous analysis
of known drugs, frameworks and side chains in commercially available molecular
libraries reflect the chemical features present in drug molecules. Such bias
towards known chemical space is advantageous (despite all concerns about
novelty of molecules): it has been shown that it is much more likely to find
binders in libraries that are biased towards known ligands (13) and, ultimately,
natural products (14).
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Fragment-Based Docking

Fragment-based docking is based on the assumption that each characteristic
subunit of a molecule should be involved in at least some favorable interactions
upon binding. While this does not necessarily mean that the pose of an individual
fragment will coincide with the location of the subunit of the parent molecule it
corresponds to, it is reasonable to assume that each fragment will occupy a pose in
which it has a favorable interaction energy. The first point has been demonstrated
by Babaoglu and Shoichet in a study in which they investigated the binding modes
of an inhibitor and its individual subunits by x-ray crystallography (15). They
show that the poses of the subunits F1, F2 and F3 do not overlap with the respective
portions of the original inhibitor L1 (Figure 2).

This does not invalidate the basic assumption of fragment-based docking,
however, sincemost small fragments havemore than one bindingmode in a protein
binding site, a point which has first been brought up in a theoretical paper by Hann
et al. (2). So even if a subunit of a molecule is not at the location in which the
individual fragment has the most favorable interaction energy, and which is thus
the crystallographically dominant one, it will probably be at a position where it
interacts favorably. Consequently, determining a number of favorable poses for
each fragment should give enough possibilities so that every subunit can be placed
in an appropriate position.

Besides the DAIM-SEED-FFLD package, which will be described in more
detail in the following, another program that follows a similar approach is eHiTS
(16, 17). The main difference is that eHiTS follows a divide-and-conquer strategy
by docking fragments and then reconnecting them to form the entire ligand. FFLD,
on the other hand, always treats the entire molecule and just uses the fragment
positions as anchors to place the ligand.

Figure 2. The known inhibitor L1 of (15) was divided into three commercially
available fragments, F1, F2 and F3, each containing an aryl carboxylate. None
of them bound in the same location as for the original molecule. Reproduced with
permission from reference (15). Copyright 2006 Nature Publishing Group.

135

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n 
Ju

ne
 2

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 S

ep
te

m
be

r 
30

, 2
01

1 
| d

oi
: 1

0.
10

21
/b

k-
20

11
-1

07
6.

ch
00

7

In Library Design, Search Methods, and Applications of Fragment-Based Drug Design; Bienstock, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2011. 



DAIM

The mechanics of DAIM have already been detailed above. Its main purpose
in the context of this suite of programs is to generate fragments that are as rigid as
possible so that docking themwithout sampling their internal degrees of freedom is
justifiable. At the same time, DAIM determines the basic properties of a fragment
and thus whether the docking in SEED will use the polar or apolar vectors to dock
it (see below). Importantly, the poses calculated for a certain fragment can be
recycled, viz. the favorable positions of a benzene fragment will be the same,
regardless of which parent molecule it originated from. DAIM thus has to keep
track of the fragments it has generated, such that every chemotype is docked only
once. For that purpose it uses the internal fingerprints, comparing them with the
Tanimoto coefficient.

DAIM Internal Fingerprints

The fingerprints used in DAIM are simple and human-readable structural
keys that are generated for each molecule and its fragments. Their main aim
is to provide a numerical identifier for a chemical structure that allows fast
comparisons. The DAIM fingerprint is made up of 17 fields that are counts of
atomic and chemical features (Figure 3): field 1: number of atoms; fields 2, 3,
4, 5, 6, 7: number of carbon, nitrogen, oxygen, halogen, phosphorus and sulfur
atoms, respectively; fields 8, 9, 10, 11: number of aromatic, double, triple and
amide bonds, respectively; fields 12, 13: number of hydrogen bond acceptors
and donor directions, respectively; field 14: number of rings; field 15: number
of heavy atoms in rings; field 16: length of the longest chain of atoms in the
molecule; field 17: Wiener Index 4 (18), modified to take into account the
covalent radii of the atoms instead of their maximum principal quantum numbers
(6), and divided by 1000.

Instead of the substructures of a molecule they use only chemical elements,
which are easily and quickly counted. Furthermore, the entries of such a fingerprint
consisting of chemical element counts can be combined to estimate molecular
descriptors, such as the log P (octanol/water partition coefficient), which can be
calculated by atom-additive methods (19, 20). In DAIM, the fingerprints are used
to decompose a library into a set of unique fragments and to choose the three
anchor fragments necessary for docking with FFLD (21, 22) (Fast FlexibleLigand
Docking).

Figure 3. Aniline with its DAIM fingerprint. Reproduced with permission from
reference (6). Copyright 2006 American Chemical Society.
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Selection of Fragments as Anchors

As will be explained below, FFLD translates each molecule conformation into
a triangle which it uses to match the conformation onto the appropriate SEED
points. The corners of such a triangle are defined by the geometrical centers
of the fragments (Figure 5, top right). Most lead-like or drug-like molecules
will be decomposed into more than three fragments, however, which leaves us
with the question how to choose the most appropriate ones. The most suitable
anchor fragments for fragment-based docking are those that form highly favorable
interactions with the protein upon binding. In other words, these fragments likely
will have the greatest influence on the final pose of the ligand. DAIM selects
the fragment triplets in a three-step selection process (6). In the first step, the
“chemical richness” ρχ of a fragment is evaluated by summing over all values in
the fingerprint (Figure 3) but neglecting hydrogen atoms or -CH3 groups which
have been added by DAIM to fill valences. The assumption behind this simple
sum is that both size features and functional groups are encoded in the internal
fingerprint. A fragment’s size will determine in which pockets of a binding site
it can fit, whereas functional groups are likely to form directional interactions
and thus determine the orientation of the fragment. Since the DAIM fingerprint
consists of feature counts, the fragments with high values of ρχ are more likely to
contain many such functional groups.

All fragments with a value of ρχ lower than ten are discarded to increase
computational efficiency. This value was chosen to exclude small apolar
fragments such as methane (ρχ = 9.09), because they would be too frequent
otherwise. Methanol (ρχ = 14.18) is still a viable selection with this threshold,
however, and is arguably more important in terms of potential interactions with
the receptor. In the second step, highly substituted fragments are eliminated.
These “central” fragments can not form significant interactions with the protein
for steric reasons. For a cyclic fragment, the number of substituents (nsubst)
and the number of rings (nrings) are counted, and the cyclic fragment is rejected
because of being “central” if nsubst ≥ kr × (nheavy atoms in ring − nrings). Using a
value of 1/1.75 for the constant kr, a disubstituted benzene is retained, whereas a
trisubstituted one is considered “central” and is therefore not used as anchor (as
is the case for the central benzene of the compound depicted in Figure 1). An
acyclic fragment is deselected if nsubst ≥ kl × nheavy atoms. The default value of 0.5
for kl allows for the selection of terminal amide groups (i.e., connected to one
other fragment) but rejects amide groups originating from within the chain (i.e.,
connected to two fragments). After the preceding two steps have been passed, the
three fragments with the highest ρχ values are chosen as anchors. Figure 1 shows
a β-secretase inhibitor as example, together with its DAIM-derived fragments,
and their chemical richness.

SEED

SEED (Solvation Energy for Exhaustive Docking) places small, rigid
fragments in a protein binding site with exhaustive sampling of a fragment’s
poses and evaluates the interaction energy taking into account the contribution

137

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n 
Ju

ne
 2

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 S

ep
te

m
be

r 
30

, 2
01

1 
| d

oi
: 1

0.
10

21
/b

k-
20

11
-1

07
6.

ch
00

7

In Library Design, Search Methods, and Applications of Fragment-Based Drug Design; Bienstock, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2011. 



of bulk solvent (7, 8). It uses polar and hydrophobic vectors as anchors to orient
the fragments. The polar vectors are distributed around hydrogen bond donors
and acceptors pointing in directions such that hydrogen bonds originating from
them are within the extended range of 180±50°. Apolar vectors are used to
mark hydrophobic regions; those are obtained by placing a low dielectric sphere
(methane) at equal intervals on the solvent accessible surface of the protein. Points
that have a favorable interaction energy are retained and the vectors are defined
by joining each point with the corresponding atom center. During docking,
every vector is matched to the complementary vectors on the fragments and the
fragments are rotated exhaustively around these vector-defined axes (Figure 4
shows an example with pyrrole as the fragment). For each fragment position
around each vector, a binding energy which includes electrostatic solvation is
evaluated.

Thus, if the fragments are rigid, as is the case for small molecules and
aromatic systems, conformational strain can be neglected and the most favorable
poses of a certain fragment can be determined with high accuracy. The
information calculated by SEED is reduced through energy-weighted geometrical
clustering from 105-106 poses to around 100 poses per fragment. Of these 100,
the geometrical centers of the top 20 cluster representatives (according to energy)
are passed on as possible corner points of the placement triangle used in the last
step (see below). For each fragment, the 20 points define a “map” which contains
the important information from SEED but is still diverse enough to offer useful
anchor points. Diversity, i.e. clustering, is especially important because using
only the top-ranked poses of the fragments does not always lead to the solution.
This is due to the fact that the binding mode of the entire ligand is a compromise
that tries to satisfy most of the fragments.

Figure 4. Pyrrole (gold carbons) is rotated around its hydrogen bond (green
dashed line) with the backbone carbonyl. It is also sampled in all other possible
hydrogen bond directions and around all hydrogen bond acceptors of the binding

site.
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FFLD

The last step is the docking of the complete putative ligand. This is done with
the program FFLD (Fast Flexible LigandDocking), which uses a scoring function
consisting of ligand dihedral and van der Waals energy, and protein-ligand polar
and van derWaals contributions (21, 22). Ligand conformations are generated and
optimized by a genetic algorithm with local optimization (22), which encodes the
torsional angle values of the rotatable bonds. A ligand conformation is placed
in the binding site by matching the geometrical centers of the subunits to the
corresponding geometrical centers of the fragment maps calculated by SEED. In
any given ligand conformation, the three fragments define a triangle and based on
the side lengths of this ligand triangle, FFLD finds those SEED points that form
triangles of approximately the same shape (Figure 5).

The ligand triangle is matched to each of the possible SEED triangles using
a least-squares-fitting method (the Kabsch algorithm (23)). At this point, the
top 10% individuals of a population (i.e. the 10% conformations with the most
favorable interaction score) are locally optimized. FFLD uses the Solis and
Wets algorithm (24) for this task and the resulting improved conformations are
re-encoded as chromosomes in the genetic algorithm if they are not too similar
to conformations already present in the population. This local optimization
together with the exclusion of similar conformations dramatically improves the
performance of the genetic algorithm (22, 25). The output of FFLD consists of
the final poses for all conformations, usually 100-200 in total. This is a strength
of the program as a variety of different poses with similar interaction energies can
be used as different starting points for modifications.

In its current implementation, FFLD takes between 30 s and one minute per
ligand. The calculation times for DAIM and SEED are negligible in the context
of the docking of a large library and usually on the order of minutes to hours.

Figure 5. Schematic representation of the DAIM-SEED-FFLD process of
fragment-based docking.
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Anchor-Based Library Tailoring

ALTA (Anchor-based Library Tailoring) was developed to exploit the
fragment generation capabilities of DAIM and the fine-grained sampling of
SEED to customize large libraries and to discard molecules with a low chance of
binding early on in a docking run (26). On the protein side, ALTA can make use
of prominent pharmacophoric features that the user deems as important for ligand
binding. During tailoring, first, all molecules in a large library are decomposed
into their fragments (Figure 6, Step 1). These are then filtered to extract those
fragments that are compatible with the pharmacophore (Figure 6, Step 2):
e.g. aromatic fragments to complement hydrophobic patches on the protein;
fragments with a positively charged group that can form an ionic interaction
with a negatively charged sidechain; etc. This will already substantially reduce
the number of feasible fragments. Those that are accepted are then docked with
SEED (Figure 6, Step 3). In the post filtering step, only fragment poses that fulfill
the pharmacophore are kept and ranked according to their SEED score (Figure
6, Step 4). Depending on the amount of molecules that shall finally be docked,
only the top N of these fragments are propagated to the next stage. There, all the
molecules that contain at least one of the top N fragments are retrieved (Figure 6,
Step 5) and then fed into the standard fragment-based docking pipeline (Figure
6, Step 6).

In that way, only molecules that in principle can fulfill the pharmacophoric
constraints of the binding site will be docked. This results in shorter docking times,
but, more importantly, in less noisy docking runs as there are fewer molecules that
will rank highly for random reasons. It is also important to note that ALTA can be
run without applying a pharmacophore constraint, in which case one would just
skip all the pertaining filter steps.

Applications

In this chapter, I would like to present several successful applications of the
DAIM-SEED-FFLD suite of software. The hit rates range between 3 and 40%,
with an average of 16% over all docking campaigns (cf. Table 1 of (27)).

EphB4

The kinase EphB4 is a promising antiangiogenic target in prostate and other
cancers. We applied the ALTA method to it, using the well-described double
hydrogen bond that most kinase inhibitors form with the hinge region as the
pharmacophoric constraint (26). Table 1 shows the statistics for this docking
campaign: from 728202 molecules at the outset, the size of the libraries was
reduced to 21418 molecules that had to be docked. Intermediately, 13533
fragments were docked with SEED, but docking a rigid fragment is in general far
less CPU intensive than docking a flexible ligand.
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Figure 6. Graphical representation of the workflow of the ALTA procedure
(top) and its application to EphB4 (bottom). The first step is the automatic
decomposition of a library of compounds (right middle rectangle) to obtain
the pool of fragments. Afterwards, fragments selected based on the binding
site features are docked and ranked according to their binding energy. Poses
for molecules that contain at least one of the top-ranking fragments are then

generated by flexible-ligand docking. Reproduced with permission from reference
(26). Copyright 2006 Wiley-Liss, Inc.

Figure 7. Compound 1 and 2 of ref. (26). Compound 2 has successfully been
progressed to a single-digit nanomolar binder (28).

Forty compounds from the high-throughput docking of the focused library of
21418 molecules were selected after visual inspection (Step 6 in Figure 6) and
tested in a Förster-resonance energy transfer (FRET)-based enzymatic assay. Ten
of these interfered with the fluorescence read-out and could thus not be measured.
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Table 1. Application of the anchor-based library tailoring approach to
EphB4

Step Outcome Nmola

Original libraries 728202

1 Fragments obtained by decomposition 35513

2 Fragments remaining after 2D-based filtering 13533

3 Fragments forming two hydrogen bonds with hinge 5235

4 Anchor fragments selected upon energy ranking 1205

5/6 Molecules docked using the “mis”b 21418

5/6 Molecules docked using the “mds”c 8849

6 Molecules forming one or two hydrogen bonds with hinge 9960
aNumber of fragments/compounds processed in the individual steps. Docking (Steps 3 and
6) was carried out in parallel on two structures of EphB4 differing only in the orientation
of the hydroxyl group of Thr693 in the ATP binding site. The value of Nmol is the number
of unique fragments (in Steps 3–5) or unique molecules (in Step 6) originating from the
docking into the two structures. b Most interesting set (mis): flexible-ligand docking
using the three fragments with the highest chemical richness (6) as anchors. c Maximum
diversity set (mds): flexible-ligand docking using the three fragments which are most
dissimilar to each other as anchors. The compounds docked using the mds are a subset of
the compounds docked using the mis. Reproduced from ref. (26).

Figure 8. Predicted binding mode of compound 2 (carbon atoms in green) and
its anchor fragment (carbon atoms in light blue) in a homology model of EphB4
(gold surface). The hydrogen bonds with the hinge region are shown in light
blue dashes. Note the significant overlap in the binding mode of compound and
fragment. Figure prepared with PyMOL (DeLano Scientific, USA). Reproduced

with permission from reference (26). Copyright 2006 Wiley-Liss, Inc.
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A compound with a phenylurea anchor (1 in Figure 7) showed an IC50 of
76 µM in the FRET-based enzymatic assay. The most potent compound (2 in
Figure 7) consisted of a three-ring system, which had also been its anchor, and
showed a Ki of about 1.6 µM, with a molecular weight of only 353 Da. Five
more compounds with different anchors inhibited the activity of EphB4 by
15–40% at a concentration of 125 µM (data not shown). The ligand efficiency

( , where HAC is the number of heavy atoms (29)) of
compound 2 is excellent with a value of 0.3 kcal/mol per heavy atom suggesting
that it is an interesting compound for further development. To evaluate its cell
permeability and cellular activity, compound 2 was tested in CHO cells for
inhibition of EphB4 autophosphorylation in a mammalian cell-based environment.
It showed only mild inhibitory effects in CHO cells at a concentration of 20
µM. Several derivatives of compound 2 were better able to permeate into cells,
however, and recently a single-digit nanomolar potency was reached (28).

Thus, with a low number of docked molecules and a very low number
(thirty) of tested ones, we were able to identify two promising lead molecules,
which corresponds to a hit rate of 6%. Moreover, the more potent scaffold could
successfully be progressed (28) without changing its anchor fragment. Lastly,
we asked the question whether our initial assumption that the pose of the anchor
fragment was predictive of the pose of the whole molecule and it was thus
justifiable to use ALTA as a selection procedure, was true. The overlay of the
docked poses of the anchor fragment and compound 2 (Figure 8) indeed show
good correspondence of the heavy atom positions, indicating that at least on the
level of docking, choosing a molecule because it contains a good anchor fragment
makes sense.

Comparing the CPU time required for the preparation and docking of the
focused library with docking of all compounds in the three libraries illustrates
that the ALTA approach required about 6500 hrs (on a Linux cluster with CPUs
with clock speeds of 1.7 GHz): 2 hrs for decomposition into fragments, 2200
hrs for fragment docking, 1000 hrs for the substructure search, and 3300 hrs for
flexible-ligand docking and CHARMM (30) minimization. The focused library
contains only 1/34th of the initial collection of compounds and only about 1/3rd
of the fragments. This corresponds to a total speedup by a factor of about 20.
Whereas the actual computation times per compound will naturally be different
for other docking programs, the speedup achieved by library preprocessing with
the ALTA procedure will remain significant.

Select Other Targets

Besides EphB4, multiple other proteins were targeted using the fragment-
based docking approach and in all cases, several ligands were discovered (27).
An outstanding example is β-secretase, a key target in Alzheimer’s disease, where
the Caflisch lab identified three series of novel inhibitors: phenylurea derivatives
(9) (the compound presented in Figure 1 originates from this screen); triazine
derivatives (31); and a set of five cell permeable low-micromolar inhibitors with a
different scaffold (D. Huang and A. Caflisch, unpublished results). These screens
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yielded a total of 27 active compounds, with the most potent having an IC50 of 3.0
µM. Furthermore, more than half of the compounds were also active in at least one
of two different mammalian cell-based assays with EC50s below 20 µM.

The fragment-based docking approach was also successful with the West
Nile virus NS3 protease. This virus and its close relative, the Dengue virus,
cause encephalitis and other fatal diseases, and are a major problem in tropical
regions. The NS3 protease was targeted in two screening campaigns, one against
the recently solved (32) x-ray structure (33), the other against a snapshot from a
1 ns-long explicit solvent molecular dynamics simulation that was selected based
on its ability to accommodate three molecular fragments representative of known
drugs and key substrates (34). In addition to high hit rates of 5 and 40%, the most
potent lead compound binds with a IC50 of 2.8 µM. Importantly, this compound
is a good candidate for further development as it occupies only two of the three
subpockets forming the NS3 binding site.

The last example that shall be presented here is a screen against cathepsin
B, a protease that is involved in cancer and rheumatic disorders (35). It is a
unique enzyme, as it can display endopeptidase, peptidyldipeptidase as well as
exopeptidase activity. The mode of activity is governed by the “occluding loop”
which acts as a lid that can block part of the binding site. If the loop is open and
the binding site is thus accessible, cathepsin B will function as an endopeptidase,
while it acts as exopeptidase when the loop is in its closed state. Indeed, we
were able to find a reversible inhibitor binding to the active site in a library of
48000 compounds. Through kinetic studies, it was demonstrated that this inhibitor
interacts with the occluding loop, stabilizing it in the closed conformation, leading
to reduced endoproteolytic activity.

Conclusions

Although the “sum is more than the parts”, docking based on the fragments of
a ligand is a successful strategy, especially for proteases where the subpockets
of a binding site are usually filled with small chemical entities. In spirit, the
fragment-based docking approach described here is very similar to the method
used in DOCK (36, 37): the geometrical centers generated by SEED and used
by FFLD are the equivalent to the matching spheres employed by DOCK. A key
difference is that the SEED/FFLD geometrical centers are specific for a chemotype
and used for the positioning of an entire fragment, whereas the matching spheres
are general (with the exception of “colored spheres”) and used as anchor points
for atoms.

As a second strategy, the fragments obtained by decomposing a molecular
library can be used to quickly and efficiently scout a protein binding site and dock
only thosemolecules that contain one of the fragments that interact with the protein
in a favorable way. Thus, the number of molecules that actually have to be docked
is substantially reduced. While speed is less and less of an argument considering
the ever-increasing power of computers, library tailoring offers the advantage of
fewer docked molecules, and consequently less noise, as well as more ways to
filter out molecules with undesired properties.
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Given their attractive features such as small size, high rigidity, and higher
coverage of chemical space, fragments will likely continue to play an important
role in computational chemistry. They will be the tool compounds that will allow
us to ask questions about true hit rates, the usefulness of our attempts to strive
for maximal coverage of chemical space, and the feasibility of achieving highly
potent ligands by connecting fragments.
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Chapter 8

In Silico Fragment-Based Generation of
Drug-Like Compounds

Peter S. Kutchukian, David Lou, and Eugene I. Shakhnovich*

Department of Chemistry and Chemical Biology, Harvard University,
12 Oxford Street, Cambridge, Maine 02138

*E-mail: shakhnovich@chemistry.harvard.edu

During virtual library construction, the ability to focus the
potential combinatorial explosion of generated molecules on
a desired region of chemical space is paramount. As such,
de novo molecule generating programs must strike a balance
between the freedom to explore new chemical space and
the limitations that must be imposed on growth in order to
achieve desired features in the generated compounds, such
as stability in water, synthetic accessibility, or drug-likeness.
With this in mind, the Fragment Optimized Growth (FOG)
algorithm was developed to statistically bias the growth of
molecules with desired features. At the heart of the algorithm
is a Markov Chain which adds fragments to the nascent
molecule in a biased manner, depending on the frequency
of specific fragment -fragment connections in the database
of chemicals on which it was trained. We demonstrate that
FOG generates synthetically feasible compounds, and that it
can be trained to grow new molecules that resemble desired
classes of molecules such as drugs, natural products, and
diversity-oriented synthetic products. In addition to generating
virtual libraries of compounds, FOG is well suited to expand
experimental fragment hits during lead optimization.

Introduction

There has recently been a surge in the application of computational de
novo drug design tools in the discovery of experimentally validated ligands, as

© 2011 American Chemical Society
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measured by the number of publications reporting the successful use of these
programs (1). Their application will no doubt escalate, with the ever increasing
number of macromolecular crystal structures and amount of computational
resources. Furthermore, the field is set for these programs to take an even greater
place of prominence in ligand discovery as these tools are especially suited to
assist in the elaboration of fragments discovered in fragment-based drug discovery
campaigns (2). This overlap of computational and experimental techniques
underscores the need for algorithms that are especially relevant to practical
experimental work. Our goal here was to develop a de novo algorithm that would
produce synthetically accessible molecules occupying a desired chemical space,
such as drug-like or natural product-like.

De novo methods have been the subject of a number of reviews (1, 3–7), so
only features especially relevant to the current work will be highlighted. In all de
novo growth applications, great care must be taken to focus the generation of new
molecules that occupy useful chemical space, since the potential combinatorial
space when generating new molecules is vast (8–13). When the goal is to
develop new therapeutically relevant molecules, it is essential to focus that
space on compounds that will bind their target adequately, are synthetically
feasible, and possess drug-like properties. Shape and energetic complementarity
to binding pockets was elegantly examined by most early de novo methods
(14–23), while synthetic tractability was only coarsely addressed, for example
by penalizing connections between heteroatoms (24), only allowing new bonds
to form between carbons when linking functional groups together (25), only
allowing functional groups to be connected to sp3 carbons (26), disallowing
certain connections between atoms (27–30), or by disallowing certain connections
as well as sequences of connections between fragments to avoid generating
unstable moieties such as acetals (31). When specific classes of molecules
were grown, such as peptides (32, 33), it was unnecessary to develop rules to
connect organic fragments since, in this case, amino acids were incorporated
as building blocks. Later methods began to address the synthetic feasibility
more carefully when generating molecules (6, 34–39) or have added synthetic
accessibility scores to prioritize generated candidates (40). It is also possible to
prioritize compounds post-generation by employing stand-alone programs that
score synthetic accessibility (41, 42). Drug-likeness, on the other hand, remains
only crudely addressed by de novo methods, for example by only using scaffolds
and appendages commonly found in drugs (43), by using drug-like fragments (37,
38), or by applying penalties when the cutoffs implied by the Lipinski “Rule of
Five” (44) are violated by grown molecules (45). It has become commonplace to
use Lipinski’s “Rule of Five” as a filter to exclude nondrug-like compounds from
chemical libraries, although a number of studies imply that if used to classify
drugs versus nondrugs, extremely poor - nearly random – accuracies are obtained
(46), and there are a number of more sophisticated machine learning algorithms
that might be applied post-generation of compounds (1).

Here we describe an algorithm, FOG (Fragment Optimized Growth) (47),
which grows molecules by sequentially adding fragments to a nascent molecule
in a statistically biased manner. It should be pointed out here that in the field
of cheminformatics and molecular modeling, fragments refer to substructures of
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compounds, that might be generated, for example, manually or by cleaving a
library of authentic compounds. They can range in size from a single atom to
a few rings with linkers and side chains, depending on the application. In the field
of fragment-based drug discovery, on the other hand, they refer to low molecular
weight compounds (MW < 300 Da), whose affinity for a target might be enhanced
by further chemical elaboration or by fusion with another fragment that has affinity
for the same target. FOG uses fragments, as described by the former definition,
to generate synthetically tractable molecules, as deemed by synthetic chemists
and synthetic accessibility prediction software (42). In addition, the chemical
and topological features of compounds grown by FOG are similar to a desired
class of chemicals, such as natural products (NP), diversity-oriented synthesis
(DOS) products, or drugs, used to train the algorithm. For example, if trained on
a NP database, our algorithm would be able to generate new natural product-like
compounds with features such as polyphenol moieties that are typical of many of
the chemicals in the authentic database, while being devoid ofmoieties like triazole
rings which might be found in DOS compounds. We developed an algorithm
capable of classifying compounds, for example as drugs or non-drugs, in order to
validate that our algorithm produced compounds that occupied a desired chemical
space. Our classification algorithm, TopClass (Topology Classifier) (47), exploits
the statistical bias of fragments and fragment connections (2D metrics), as well as
coupled 1D metrics (such as number of atoms and rotatable bonds). The accuracy
of TopClass compares favorably with methods reported in the literature (48). In
addition, since TopClass is transparent in the features that it classifies compounds
by, it was used to identify salient features of drug-like compounds.

Method

1.1. Calculating Transition Probabilities

At the heart of our algorithm is a Markov Chain. Each fragment is considered
a “state,” and during growth, transition probabilities are used when selecting
subsequent fragments. As such, it is necessary to calculate transition probabilities
for each fragment-fragment connection. We first calculated the probability that
two fragments were connected in an authentic database of compounds (such as
drugs or natural products), and then converted these frequencies into transition
probabilities, as detailed in our original publication (47). In all database searches
that were performed, SMARTS (49) strings were used in order to query the desired
fragment or substructure, as implemented in ChemAxon’s jcsearch (50). One
could imagine collecting similar statistics by exhaustively enumerating fragments
from a particular database using specific cleavage rules, rather than performing
substructure searches. Keeping with the sequential growth of fragments joined
by single bonds employed by a number of de novo algorithms (23, 29–32, 45)
fragments are attached to each other by removing a hydrogen from each fragment,
and subsequently connecting the atoms that were attached to those hydrogens
to each other. Fragments are now added, however, in a statistically biased
way, depending on the growth fragment. In the current version, rings are only
generated by adding ring fragments to the growing molecule, and two non-ring
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fragments already connected to a growing molecule cannot connect to form a
ring. The fragments included in our first version of the program are depicted
in Figure 1. To evaluate how well our algorithm reproduced the probabilities
that specific fragments would be bonded to each other in grown databases, we
compared these probabilities (for example, how likely a benzene ring is bonded to
an amine fragment) with the probabilities obtained from the training database, as
discussed in the results. We defined our connectivity propensities as the number

of times fragment i is connected to fragment j ( ) divided by the number of

times fragment i is connected to all other fragments ( ):

1.2. Growth

To initiate growth a fragment is chosen either randomly or based on its
frequency in the training database. All subsequent fragments are added in
the following manner. Throughout growth fragments present in the growing
compound are assigned to one of three lists based on what type of growth is
available from that fragment: linear (only one existing connection to another
fragment), branch (at least two existing connections to other fragments), or
none (all growth sites have been filled). The population of these three lists
determines the possible growth modes that are available (linear, branch, or none).
A user defined branching probability is used to select one of the modes (linear or
branching), if both are available. If only one of the modes is detected, that mode is
automatically selected. If all growth sites are saturated, then growth is terminated
and the molecule is discarded. Unless stated otherwise, the branching probability
P(B) was set to 0.5 for our experiments. This was to access moderately branched
structures, while avoiding highly branched structures that might be synthetically
inaccessible (51). Once a growth mode has been selected, a growth fragment
is then chosen from the appropriate list, and a growth site on that fragment is
randomly selected.

The selection of the fragment that will be connected to the current growth
fragment is then made. This can either be done by using the transition probability
of the growth fragment to select the subsequent fragment, or by first deciding to
select a ring or non-ring fragment prior to using transition probabilities to select the
next fragment. When the latter method is used, a ring non-ring decision is made
based on how often the growth point of the fragment is connected to a ring or non-
ring in the training database. Alternatively, the user can provide a ring/non-ring
transition probability that will be used for all fragments. Once a decision to grow to
a ring or non-ring is selected, the correct type of fragment is then selected based on
the growth fragment’s transition probabilities. It should be noted that the transition

154

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n 
Ju

ne
 1

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 S

ep
te

m
be

r 
30

, 2
01

1 
| d

oi
: 1

0.
10

21
/b

k-
20

11
-1

07
6.

ch
00

8

In Library Design, Search Methods, and Applications of Fragment-Based Drug Design; Bienstock, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2011. 



probability matrix in this case is split into twomatrices, one for transitions to rings,
and one for transitions to non-rings, and normalized accordingly.

This process then repeats itself until all growth sites are saturated, a user
defined maximum number of fragments have been added, or a maximum molar
mass has been obtained. The molecule is written to file as a SMILES string (52).
This process is illustrated in Figure 2.

Figure 1. Fragments used by FOG algorithm during growth.

155

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n 
Ju

ne
 1

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 S

ep
te

m
be

r 
30

, 2
01

1 
| d

oi
: 1

0.
10

21
/b

k-
20

11
-1

07
6.

ch
00

8

In Library Design, Search Methods, and Applications of Fragment-Based Drug Design; Bienstock, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2011. 



Figure 2. Fragment Optimized Growth (FOG) illustration. 1: Select initial
growth fragment based on frequency in training database pi. 2: Select growth
atom on fragment. 3: Decide to transition to ring or non-ring fragment based
on growth atoms ring/non-ring probability. 4: Select next fragment to be added
with transition probability Pi→j, and connect two fragments. 5: If current MW
> MWcutoff or if the number of fragments > fragment cutoff, write molecule to
file and start over. 6: Designate fragments in nascent molecule as linear (red),
branch (green), or no growth sites. 7: Select mode of growth (linear or branch)
based on branching probability P(B). 8: Attempt to select growth fragment
(green) that fits current growth mode. If mode is not available, try other mode
of growth. If no growth mode available, discard growing molecule and start
over. Repeat from step 2. 9: Remove all molecules containing disallowed 3mers

(orange). (see color insert)
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1.3. 3mer Screen

Our growth algorithm is capable of stringing together a sequence of 3
fragments that might be synthetically unfeasible or chemically unstable, since
it only employs information about the current growth fragment when adding a
new fragment, and is “unaware” of any other fragments that might already be
connected to it. A geminal diol (Figure 3, top) which in most cases would convert
to a ketone in aqueous conditions is an example of such a substructure. One might
employ a second order Markov Chain where transition probabilities are based on
the current growth fragment and all fragments already connected to it, in order
to avoid such substructures. We decided to use a simpler approach that entails
removing all compounds that contain disallowed 3mers post-generation. Two
sources for disallowed 3mers are implemented in FOG. First, any 3mer sequence
that is not observed in the training database is considered disallowed. We do this
by searching our training database for all 3mer sequences that can be composed
of our fragments. Rings are treated very generally in order to avoid being too
stringent. For example, a specific SMARTS string representing a ring carbon
might match all sp3 carbons that are in a ring, but it would not be sensitive to the
type of ring that the sp3 carbon belongs to. The user can manually supply a second
set of disallowed 3mers. These are added to avoid chemically unstable moieties
such as acetals, ketals, aminals, and iminals (Figure 3), or other substructures
that the user might want to avoid. The user defined disallowed 3mers might be
similar to the “disallowed angles” in the chemical rules employed by GroupBuild
(31). One could imagine using more stringent or higher order screens (4mer,
5mer, etc.), but we chose not to do this as we suspected that it would hinder the
algorithm’s ability to generate novel compounds while not significantly increasing
the likelihood of generating synthetically feasible compounds.

Figure 3. User defined disallowed 3mers. R is any ring or non-ring sp3 carbon.
Hydrogens can also be occupied by any non-hydrogen atom.

2. Classification Algorithm: TopClass

We developed the classification algorithm TopClass in order to evaluate the
output of our growth algorithm. A number of individual components that assess
different features of a molecule are combined to generate the final TopClass score.
Each measure is based on the difference in probabilities or log odds score of
observing some feature in a given database A versus B. They return a positive
or negative value depending on whether the scored molecule is deemed more
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representative of one class of molecules or the other. The total score is a linear
summation of the individual scores, and a molecule is classified based on the sign
of the final score. Two of the components measured 2D descriptors: the fragment

frequency score ( ) and the fragment-fragment connection score ( ).

We refer to this score as “2D” in Tables 1-2. These were combined with three
1D descriptors that assessed the joint probability of hydrogen bond donors and

acceptors ( ),rotatable bonds and atoms ( ), and rings and

atoms ( ):

We refer to this score as “2D + c1D” in Tables 1-2. The coefficients ( -
) were chosen in order to yield the best separation, without over-fitting to the

training set. Details of how these descriptors and coefficients were obtained are
provided in the original text (47).

3. Separation Algorithm: D(min) or D(ave)

The minimum Tanimoto dissimilarity D(min) as computed by Chemaxon’s
Compr (50)of a test set compound was calculated in respect to the two training sets
that it was being compared to. The test chemical was then classified according to
whatever training database it had the lowest D(min) for. The average dissimilarity
D(ave) between a test compound and training database compounds was also used
in a similar manner to assign test molecules to database A or B. For the drug/
nondrug separation, theD(min) score was combined with the coupled 1D topology
metrics (the last three terms in equation 4), as described previously (47), which we
called the D(min) + c1D score Tables 1-2.

4. Lipinski and Veber Screens

For the Veber oral bioavailability screen, jcsearch (50) was used to identify
all molecules that had a rotatable bond count of 10 or less, and had a polar surface
area (PSA) (53) of 140 Å2 or less. For the Lipinski screen with no violations,
jcsearch (50) was used to identify all molecules with MW ≤ 500, logP ≤ 5, H-bond
donors ≤ 5, and H-bond acceptors ≤ 10. For the Lipinski screen with 1 or two
violations, the MW, logP, H-bond donors, and H-bond acceptors were calculated
for each entry using cxcalc (50), and an in-house perl script was used to determine
how many members in a library passed with 1 violation, and how many members
passed with two violations.
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5. Authentic Compound Libraries

The drug test (218) and training sets (2,495) as well as the non-drug test (110)
and training sets (1,263) have previously been described by Hutter (48). The DOS
and Natural Product (NP) libraries are from the Forma Collection compiled at the
Broad Institute (54). About 10% of the DOS and NP compounds were randomly
selected for use as the test sets (673 for DOS, 230 for NP), and the remaining
compounds were used as the training sets (5,950 for DOS, 2,247 for NP).

Results

A Markov Chain approach with branching, treating each growth fragment
as the current state, and selecting subsequent fragments based on transition
probabilities, was employed in an effort to develop an algorithm that generates
novel small molecules that resemble but are not identical to known compounds.
In a preliminary study, the ChemBank Bioactives (4,669 compounds) (54) were
used to train these transition probabilities for a diverse set of fragments (Figure 1).
The ChemBank Bioactives database is relatively small and contains chemically
reasonable molecules capable of perturbing biological systems, making it an
attractive choice for our initial studies. We compared grown compounds (10,000)
with the ChemBank Bioactives by comparing their connectivity statistics (the
probability that a given fragment i is connected to fragment j in the database, Eqn
1). The similarity of the two databases was evidenced by the excellent agreement
we observed (R2=0.90 for all points, R2=0.76 when values <0.1 were removed,
Figure 4). Compounds resulting from unbiased growth, on the other hand, did
not resemble the ChemBank Bioactives (R2=0.01). Similar results were obtained
when larger training databases were employed (NCI Open Database Aug00 (55),
250,251 compounds, R2=0.92 for all points, R2=0.81 when values <0.1 were
removed).

Visual inspection of the transition probability matrix (Figure 5) obtained after
training on the ChemBank Bioactives revealed that it was in good agreement with
chemical intuition. The ring→ring transition probabilities are in general lower
in magnitude than the ring→non-ring transition probabilities, and the ring→ring
region of the matrix is also sparse compared to the ring→non-ring region. This
might be because ring-ring connections are often difficult to synthesize. The
matrix as a whole is also relatively sparse, revealing that many fragments are never
connected in the training database. This undoubtedly helps focus combinatorial
growth. It is also apparent that transitions to specific fragments, are especially
high – most notably the methyl and benzene fragments (denoted by the black and
red asterisks, respectively, Fig 5). The prominence of high transition probabilities
to the methyl group is not surprising since sp3 carbons often serve as part of the
framework of organic compounds. Benzene chemistry is very well established,
and facile substitutions and transformations of appendages allows for diverse
groups being connected to benzene (56).
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Figure 4. The probability that fragment i is connected to fragment j (Pij, Eqn. 4)
in a database of molecules grown with a Markov Chain versus Pij of ChemBank
Bioactives used in training the Markov Chain. The probability of branching

P(B)=0.5. (see color insert)

Figure 5. Transition probability matrix used in Markov Chain growth. High
probability transitions are depicted as black, while low probability transitions
are clear. Certain transitions are highlighted with color. Transitions from
methyl to other fragments (bottom row) and from other fragments to methyl
(first column) are not highlighted. Asterisks are used to denote the columns
representing transitions to methyl (black) and benzene (red). (see color insert)
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We next assessed how the number of fragments added and the branching
probability impact how grown molecules compare to the training database. The
corresponding SMARTS (49) of molecules of various sizes (1-11 fragments)
and grown with different branching probabilities (P(B) = 0.0-1.0) were used
as substructure search strings on the original training database (Figure 6). The
branching probability did not have a significant effect on the percentage of
substructure hits (47). The number of hits fell quite rapidly, however, as the
number of fragments increased (Figure 6, FOG (MC)). Even so, the probability
to grow substructures present in the training database was much higher for
FOG versus unbiased growth (Figure 6, No Bias). This implies that when a
few fragments are added with FOG, it is likely that they yield a substructure of
a molecule in the original database. An entirely new molecule is accessed as
more fragments are added, but it is likely that it is composed of one or more
substructures that can be found in the database.

We then assessed whether the FOG compounds were synthetically accessible.
We asked organic chemists to judge the synthetic accessibility of compounds
that were grown with and without a statistical bias (47). Apparently, statistically
biasing the addition of fragments with aMarkov Chain approach was not sufficient
to produce synthetically feasible compounds, since molecules generated with a
statistical bias were just as likely to be scored as unsynthesizable or unstable
as compounds grown with no bias (FOG (MC) versus No Bias, Fig 7). The
following improvements were implemented in FOG after visually inspecting
what molecules were deemed unstable.

Figure 6. The probability of a grown molecule to be a substructure hit of
a compound in the training database. Molecules are either grown with no

statistical bias (No Bias), or with FOG using a Markov Chain (MC) or a Markov
Chain employing a ring/non-ring transition probability as well as a disallowed
3mer screen (MC+). Errors bars reflect the standard deviation of 3 sets of 100

grown molecules. (see color insert)
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An initial observation was that the probability that a fragment is connected
to a ring in the grown molecules (11%) was less than in the training set (24%).
This might be due to our fragment pool under-representing ring fragments in the
training database. We reasoned that this would lead to fragments transitioning
to non-ring fragments more often than they would if more ring fragments were
included in our growth fragments. This being the case, we incorporated a ring/non-
ring transition probability. The algorithm first decides whether the next fragment
should be a ring or a non-ring, whenever a fragment is about to be added, based
on how often the growth fragment is connected to rings in the training database.
A specific fragment is then selected from the pool of rings or non-rings based on
renormalized transition probabilities. The second modification we made was to
add a post-generation disallowed 3mer screen. The FOG algorithm is capable of
forming 3mers that are chemically unstable or synthetically demanding, since it
adds fragments based on the current growth fragment, and not on fragments that
might be connected to the current growth fragment. To remedy this, compounds
that contain 3mers that are undesired by the user (such as acetals), or any 3mer
substructures that were not detected in the training database are removed post-
generation (step 9, Figure 2).

We observed that ring propensities in the grown molecules (21%) were
similar to those observed in the training set (24%) when our modified algorithm
was employed. Furthermore, the new algorithm was more likely to grow
substructures present in the training database (Figure 6, FOG (MC+)). Surveys
of organic chemists demonstrated that FOG did not grow a single molecule that
was deemed unsynthesizable or unstable (Figure 7). The difficulty of synthesis,
on the other hand, remained similar to molecules grown without any bias (Figure
8). Evaluation of the synthetic accessibility with SYLVIA (42) suggested that the
grown compounds’ synthetic accessibility was similar to that of the chemicals
FOG was trained on, and that it was slightly more accessible than compounds
grown with no bias (47).

We then assessed FOG’s ability to grow classes of molecules. We first sought
to develop a classification algorithm capable of accurately categorizing molecules,
in order to evaluate the output of FOG. We initially employed an algorithm that
classified compounds based on statistical biases in the fragments that they were
composed of, and how they were connected (Eqn 2). Using such an algorithm,
authentic DOS products could be accurately separated from natural products (2D,
Table 1). After training FOG on either DOS or NP compounds, we generated
libraries of putatively DOS andNP-likemolecules, respectively. Our classification
algorithm scored 100% of grown DOS compounds and 88% of grown natural
products as belonging to their intended molecule class. We were also able to
separate authentic DOS compounds fromNP compounds with high accuracy using
an alternative separation algorithm based on the minimum Tanimoto dissimilarity
when a test compound is compared to training set compounds (D(min), Table 1).
In contrast, using the average dissimilarity in chemical fingerprints as a metric to
classify compounds gave poor separation of classes (D(ave), Table 1). Although
our molecules were more often scored as belonging to the database FOG was
trained on using D(min) as a classifier, the enrichment was more moderate than
our earlier assessment would suggest (63.0% DOS, 78.0% NP).
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Figure 7. The percent of de novo grown compounds deemed not synthesizable
or unstable by organic chemists. Molecules are either grown with no statistical
bias (No Bias), or with FOG using a Markov Chain (MC) or a Markov Chain
employing a ring/non-ring transition probability as well as a disallowed 3mer
screen (MC+). Errors bars reflect the average deviation of responses for Survey

1 (N=5) and Survey 2 (N=8). (see color insert)

Figure 8. The average synthetic difficulty of de novo grown compounds ranging
from 1 (easy) to 10 (difficult) as judged by organic chemists. Molecules are
either grown with no statistical bias (No Bias), or with FOG using a Markov

Chain (MC) or a Markov Chain employing a ring/non-ring transition probability
as well as a disallowed 3mer screen (MC+). Errors bars reflect the average

deviation of responses for Survey 1 (N=5) and Survey 2 (N=8). (see color insert)
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Table 1. Evaluation of separation algorithms. We used fragment and
fragment connection biases (2D) as well as coupled 1D metrics such as
H-bond donor/H-bond acceptors in addition to the 2D descriptors(2D +
c1D). In addition D(min) and D(ave) of chemical fingerprints compared to
training sets were used for classification. We also used a combination of

D(min) and the coupled 1D metrics (D(min)+c1D). Test sets were evaluated
(DOS vs NP, drug vs nondrug), as well as molecules grown with the FOG

algorithm (DOS grown, NP grown).

Classification Method (% correct)

Compound Set Comp. 2D 2D+ c1D D(min) D(ave) D(min) +
c1D

DOS test 673 79.3 99.7 96.3

NP test 230 90.0 97.8 56.1

DOS grown 100 100.0 63.0 100.0

NP grown 100 88.0 78.0 17.0

drugs test 218 80.3 80.7 94.5 98.6 92.7

nondrugs test 110 58.2 62.7 68.2 9.1 73.6

We then aimed to separate authentic drugs from nondrugs. Our initial
results for identifying drugs (80.3%) and nondrugs (58.2%) compared favorably
to accuracies reported in literature for the same databases (71.1% for drugs,
40.9% for nondrugs) (48). Fragments characteristic of drugs and nondrugs were
identified by our method (Figure 9). The top three fragments overrepresented
in drugs, for example, are methyl, amide, and non-ring tri-substituted sp3
carbon, while the alkene, non-ring sp2 oxygens and fused benzene rings (as in
naphthalene) are overrepresented in nondrugs. It should be noted that these
relative fragment propensities are sensitive to the composition of the nondrug
database (57).

We then added three 1D coupled topology metrics to our classification
algorithm in an attempt to improve the separation accuracy. These metrics score
the differences between two databases in joint probabilities for two variables.
They are depicted as heat maps in Figure 10, and inspection of the plots yields
valuable information concerning drug-like features. For example, the drug-like
region (red) of the donor-acceptor plot resides above the nondrug-like (blue)
region. Also of note, we see that molecules with ~3-7 more acceptors than donors
are scored drug-like. The bulk of both the drug and nondrug-like regions lie within
the Lipinski cutoffs (<10 acceptors, <5 donors), while some of the drug-like
region lies outside of these cutoffs. The atoms-rings plot reveals that highly fused
structures (high ring:atom ratio) as well as large molecules without any rings (low
ring:atom ratio) lie in the nondrug-like region. Similarly, drug and nondrug-like
regions are separated for rotatable bonds versus atoms. Larger molecules (>40
atoms) are predominantly scored as drugs, while smaller molecules (<25 atoms)
are predominantly scored as nondrugs. Intermediate sized molecules (~30-40
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atoms) that are either highly flexible or extremely rigid tend to be non-drugs,
while those with intermediate flexibility tend to be scored as drugs. Using the
modified algorithm, TopClass (Topology Classifier), there was an improvement
in the classification of nondrugs (62.7%) while the accuracy in classifying drugs
was maintained (80.7%). We also applied an alternate separation strategy based
on the minimum Tanimoto dissimilaritiesD(min) of chemical fingerprints of a test
compound compared to the training set compounds. High accuracies separating
the drugs (94.5%) and nondrugs (68.2%) test sets were obtained. By combining
the D(min) score with our three coupled 1D metrics the overall accuracy was
slightly improved (92.7% drugs, 73.6% nondrugs).

Figure 9. Relative probability of fragments in drugs versus nondrugs. Red bonds
indicate connections to any atom including hydrogen, except for the sp3 carbons
where the number of attached hydrogens in explicitly defined. The benzene

ring with two R substituents searches for fused benzene rings as in napthalene.
Only fragments with large positive or negative values are depicted for clarity.

(see color insert)

We devised the following two step screen in order to ascertain how enriched
in drug-likeness our grown molecules were compared to those grown with no bias
(Figure 11). First, molecules were classified as “no bias” or drugs. The training
set for no bias compounds (10,000) was generated by growing compounds with
no bias in the transition probabilities. Compounds classified as drugs by the first
step were then passed to the second step, and classified as drugs or non-drugs.
The entire screen was performed using three different classification algorithms:
TopClass, D(min), or D(min) as well as the coupled 1D metrics from TopClass
(D(min)+c1D). When 200 compounds grown with no bias were subjected to the
first screen using TopClass, not a single molecule was classified as drug-like (Table
2). When molecules grown with FOG (previously trained on the drug database),
were subjected to the same screen, however, 83.0% remained after the first step,
and 81.5% of the initial 200 remained after both steps. Slightly different results
were obtained using the other two classification algorithms (Table 2).
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Figure 10. The differences in joint probabilities of 1D topology descriptors
between drugs and nondrugs reveal drug-like regions (red) and nondrug-like
regions (blue). Atom counts are binned with increments of 5. (see color insert)
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Figure 11. Two step screen to identify drug-like compounds. In step 1, test
compounds are classified as drugs or no bias compounds. Compounds that pass
step 1 are then classified as drugs or nondrugs in step 2. Three classification
algorithms were employed independently using this framework: TopClass,

D(min), and D(min)+c1D.

The drug-likeness of our grown molecules was also assessed using two
popular oral bioavailability screens: the Lipinski (44) and Veber (58) screens. To
first assess the behavior of these screens, the authentic drugs and nondrugs were
subjected to them (Table 2). Although the majority of drugs pass these screens,
the majority of nondrugs pass as well. This further supports previous findings that
the Lipinski rule of 5 is a poor discriminator of drugs versus nondrugs (46, 59).
Even so, we applied them to our grown molecules, to demonstrate the weaknesses
inherent in relying on these screens during de novo design. A significant amount
of compounds grown with FOG pass the Lipinski (44) (55%) and Veber (58)
(80%) screen. Remarkably the majority of the compounds grown with no bias
pass the Lipinski screen (79.5%) or the Veber screen (80.0%) even though only
0-2% passed our two step screens.

We then assessed the ability of FOG to generate “privileged” or biologically
active scaffolds (60). Several scaffolds were investigated, that were composed
of 2-4 fragments (Figure 12). Illustrative examples of drugs, natural products,
or bioactive compounds containing these scaffolds are depicted in Figure 12
(61–69). A library of ~500,000 compounds was generated with FOG, after first
training FOG on the drugs training set (2,495 compounds). The frequency of
each scaffold’s presence in our FOG library, as well as in the training database
of drugs was assessed. FOG was able to generate each of the scaffolds that were
evaluated. Notably, FOG generated scaffolds that were not present in the training
database of drugs (3c-d). Furthermore, FOG was capable of generating large
scaffolds, composed of 4 fragments (4a-b).

We sought to balance the ability to grow “drug-like” molecules with
the ability to access synthetically accessible new molecules. The synthetic
accessibility of our grown drugs was similar to that of authentic drugs of similar
molecular weight as judged by SYLVIA (42), and it was slightly more accessible
than compounds grown with no bias (Figure 13A). We calculated the minimum
Tanimoto dissimilarity when comparing each of our grown drugs’ chemical
fingerprints with the entire training database of authentic drugs (Figure 13B).
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Table 2. Percentage of compounds scored as drugs using the two step screens as well as popular oral bioavailability screens
such as Lipinski (L) and Veber (V)

Drug Screen (%)a

Compound Set Compounds 2 step
TopClass

2 step
D(min)

2 step
D(min) + c1D

L(2) L(1) L(0) V

drugs test 218 100.0 93.1 85.3 84.8

Nondrugs test 110 99.1 99.1 88.2 93.6

drugs grown 200 81.5 39.5 46.5 100.0 99.5 54.5 79.5

no bias grown 200 0 2.0 2.0 100.0 99.0 79.5 80.0
a Two step screens were based on TopClass, D(min), or D(min) and coupled 1D descriptors (D(min)+c1D). Oral bioavailability screens such as Lipinski (L)
with 2, 1, or 0 violations allowed and Veber (V) are also reported.168
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Figure 12. The occurance of bioactive scaffolds in Drugs (~2.5 K compounds)
and in a FOG generated library (~500K compounds). Scaffolds are composed
of two (2a), three (3a-d), or four (4a-b) fragments. Connections between

fragments in the scaffolds are colored red. Examples of drugs, biologically active
compounds, and natural products that contain the scaffolds are depicted with
the scaffold highlighted in red. The occurance of the scaffold in the training
set of drugs (~2.5 K compounds) or in FOG generated compounds (~500 K

compounds) is reported. (see color insert)
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Figure 13. (A) Histogram of synthetic accessibility (1=easy, 10=difficult) of
drugs grown (N=200), no bias grown (N=200), and authentic drugs with
MW of 400-480 (N=410) as assessed by SYLVIA. (B) Histogram of minimum

dissimilarity D(min) of chemical fingerprints of the drugs test (N=218), nondrugs
test (N=110), drugs grown (N=200), and no bias grown (N=200) libraries
compared to the authentic drugs training set. Chemical fingerprints were
generated with GenerateMD (Chemaxon), and D(min) was calculated with

Compr (Chemaxon). (see color insert)

We followed this procedure to ensure that we were accessing new molecules.
For comparison, we also calculated the minimum dissimilarity of the drugs test,
nondrugs test, and no bias grown libraries. For most of our grown compounds,
a minimum dissimilarity of ~0.4-0.6 was obtained, ensuring that we were indeed
generating novel compounds.
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Discussion

FOG generates new compounds in a chemical space that is similar to that of
the compounds that it was trained on, whether they are drugs, natural products, or
DOS compounds. This is achieved by constraining the sequential growth of small
molecules by the transition probabilities of the growth fragment. Our method is
in contrast to programs that sequentially grow small molecules by selecting new
fragments randomly, or by selecting them based on a user defined frequency (30,
70) or their frequency in a database (71), rather than based on the frequency of
their connections to the growth fragment in a database. Of note, libraries grown
with our transition probabilities reproduce the frequencies in connections between
fragments (Figure 4). Our algorithm can be used as a stand-alone program to
generate a virtual library of compounds of specific classes, or it can be easily be
incorporated into existing de novo design programs that employ sequential growth
of fragments. Furthermore, it could be used to explore chemical space around
experimentally determined fragment-based screening hits.

One of the features of FOG is that it was designed to be flexible: it can be
trained on a particular class of chemicals, and produce compounds that occupy
similar chemical space. We demonstrated this by generating compounds that
resemble drugs, natural products, and DOS compounds. This is in contrast to
programs that are tailored to produce specific classes of compounds, such as
peptides (32, 33) or natural products (72, 73).

Another aspect of FOG that is worth noting is that its building blocks are
fragments. In the current version, we used functional groups, rings, and tetrahedral
carbon (Fig 1). Specific fragments have been shown to preferentially interact
with particular protein residues (74)(75). In addition, fragment-based drug design
efforts often identify fragments with high ligand efficiency for a particular binding
pocket. This information can be used to seed FOG with a particular fragment, in
order to access focused libraries that are extensions of these fragments.

We have also developed TopClass, a linear scoring compound classification
algorithm. The transparency of our algorithm has allowed us to investigate
interesting features that distinguish drugs from nondrugs. For example, the
H-bond donor and acceptor plot (Figure 10) indicated that drugs tend to have
~3-7 more acceptors than donors. This observation leads one to question whether
the opposite trend (donors>acceptors) would be observed in the binding sites of
proteins, or whether it is because of some other physical or biological reason.
It does not seem to be a synthetic bias since nondrugs tended to have the same
number of donors and acceptors. We also used a complementary classification
method based on Tanimoto dissimilarities D(min). This approach proved
extremely accurate in classifying test sets of drugs and nondrugs, and helped
inform how drug-like our grown molecules were.

Application of the TopClass separation algorithm in a two step screen (Figure
11) demonstrated that FOG molecules did indeed occupy the chemical space
that was intended (81.5 % deemed drug-like). Alternate classification methods
(D(min) or D(min)+c1D) corroborated this finding. Furthermore, privileged
scaffolds were grown by FOG (Figure 12), even if they were not present in the
training database. Generating drug-like virtual libraries has been challenging in
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the past. For example, when fragments were randomly combined to generate
compounds, <0.1%were selected when they were screened for similarity to known
drugs and predicted biological activity (using trend vector analysis) (71). When
scaffolds and appendages commonly found in drugs were randomly combined
to generate 30 compounds, only 33% were scored as drug-like (76). Likewise,
using a similar method to generate 106 compounds, only 7% were considered
CNS-active with a high degree of confidence (77). When all chemically stable
combinations of C,N,O, or F containing 11 atoms or less were virtually generated
(26.4 x 106 million compounds), only ~0.16% were deemed as having GPCR,
kinase, or ion channel blocking activity when screened with a Bayesian ANN (12).
We found that when molecules were built by the sequential addition of fragments
without any bias it was nearly impossible to access drug-like compounds (0%
with TopClass, 2% with D(min) or D(min)+c1D), although the majority of these
compounds passed popular oral bioavailability filters such as Lipinski (80%) or
Veber (80%). When FOG was employed, a much higher fraction of generated
compounds were scored as drugs with various separation algorithms in our two
step method (81.5% Topclass, 39.5% D(min), or 46.5% D(min)+c1D). This
signifies a huge enrichment in drug-like character in the resulting virtual library.
It also exposes the potential liability of generating molecules that lie outside of
drug-like space when compounds are generated without any connectivity bias
followed by an oral bioavailability filter (such as LigBuilder (45)), although a
user of these methods may have a false sense of focusing the combinatorial space
with the oral bioavailability filters. It is conceivable that unbiased growth when
constrained by the geometric and electrostatic environment of a protein binding
pocket may result in drug-like compounds, but this has yet to be demonstrated.
Our findings strongly suggest that implementing our growth algorithm in de
novo methods could greatly improve the chance of identifying interesting lead
compounds by focusing the potential combinatorial explosion on compounds that
occupy relevant chemical space.
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Chapter 9

Fragment-Based Drug Discovery for Diseases
of the Central Nervous System

Vicki L Nienaber*

Zenobia Therapeutics, 505 Coast Blvd. South, Suite 111, La Jolla, CA 92037
*E-mail: Vicki@zenobiatherapeutics.com

Although diseases of the central nervous system are among
the most devastating to patients and their families, disease
modifying treatments have lagged behind other therapeutic
areas. Current treatments were primarily discovered by
serendipity and address disease symptoms. In the genomic
era, understanding of CNS biology and disease associated
mutations is growing thereby identifying a new series of
putative targets. As CNS biology matures, there is growing
need for a discovery paradigm that addresses the unique needs
of CNS therapeutics, namely the ability of compounds to cross
the blood-brain-barrier. The physiochemical properties of CNS
therapeutics have been identified based upon historic data and
may be used to guide discovery efforts. One notable variable
is that the compounds should be low molecular weight. In this
chapter, we discuss the merits of fragment-based lead discovery
and how it may be used to address the challenges of CNS drug
discovery. We also summarize practical strategies for library
design and screening. Finally, we summarize examples of how
fragments may be optimized into lead compounds.

Central nervous system (CNS) disorders comprise the second largest area
of need in the drug discovery industry behind cardiovascular disease (1). These
diseases are among the most devastating for patients. In fact, dementia and
psychosis are ranked in the top five most disabling conditions in the world (2).
CNS disorders are also among the most expensive for patient care. For example,
Alzheimer’s disease which affects over 37 million people worldwide (3) has an
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annual estimated cost to society of >$100 billion in the US alone (4). Despite
the undisputed need for treatments and disease modifying therapies for CNS
disease, this area has lagged behind other therapeutic areas. In fact, many current
treatments were discovered over 50 years ago by serendipity (5). Why is this? It
has been attributed to a combination of factors. One confounding factor is the
complicated biology and likely multipronged basis for these diseases. Another
is the requirement that compounds access the CNS by crossing the blood-brain
barrier (BBB).

The genomic era has facilitated a new level of understanding of the regulatory
processes in cell signaling and biological disorders. Proteins upregulated,
downregulated or mutated in disease have been identified. Specifically for CNS
disease, efforts such as the Allen Brain Atlas (6) (www.alleninstitute.org) are
mapping gene expression in mouse and human brain. In fact, commercial kits
such as those available from 23andme (www.23andme.com) are available to the
public allowing routine genetic testing for markers of CNS disorders such as
Parkinson’s disease (PD), Alzheimer’s disease (AD), schizophrenia and bipolar
disorder. One of these, LRRK2 kinase has a series of activating point mutations
associated with increased risk of PD (7–9) and is a popular drug discovery target.
Of course, understanding genetic markers for a disease is only the first step, for
example, the genetic mutation basis for Huntington’s disease (HD) has been
understood since 1993 (10) but it is only recently that targets have been brought
forward for development of a therapeutic agent. These targets are being curated
and made publically available by the Cure Huntington’s Disease Initiative (CHDI,
http://www.hdresearchcrossroads.org/). The Michael J. Fox Foundation also has a
significant effort in identification of targets for PD (http://www.michaeljfox.org/)
as does the Alzheimer’s Research Forum (http://www.alzgene.org/). These efforts
combined with biological validation studies in cells and animals are bringing
forward a new generation of targets for CNS drug discovery.

The Blood Brain Barrier: A Unique Consideration for CNS
Drug Discovery

It is estimated that 98% of potential drug molecules are excluded from
the brain (11) which presents a considerable challenge for discovery of CNS
therapeutics. For compounds to access the brain, they must cross the blood-brain
barrier (BBB) which is formed by endothelial cells of cerebral blood vessels
characterized by tight junctions that are present in the brain and at the interface
between the blood and cerebro-spinal-fluid (CSF) (12). This barrier maintains
cerebral homeostasis and has evolved to protect the brain. Transport systems exist
to allow nutrients and amino acids into the brain and efflux transport systems of
the ATP binding cassette (ABC) family transport lipophilic molecules, such as
xenobiotics, out of the brain. While some CNS penetrable compounds effectively
utilize active transport systems to access the brain [e.g. L-dopa for PD], the vast
majority of compounds enter the brain by passive diffusion. The efflux transporter
most relevant to CNS drug discovery is the P-glycoprotein (P-gp) pump (12). The
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BBB is considered one of the unique challenges in discovery of a successful CNS
therapeutic versus other disease areas.

Although predictive computational models for compounds that are subject to
Pgp efflux are in the early stages of development, general guidelines have been
assembled and may be incorporated into the drug discovery process. One such
guideline is the “rule-of-four” (13) which states that compounds subject to Pgp
transport (Pgp +) will have total hydrogen bond acceptors (N+O) ≥ 8, molecular
weight (MW) > 400 and an acidic pKa > 4. Compounds resistant to Pgp transport
(Pgp -) will have total hydrogen bond acceptors (N+O) ≤ 4, MW <400 and basic
pKa < 8. Hence a correlation has been drawn between number of hydrogen bond
donors and propensity for Pgp efflux. More specifically defined criteria may
include a structural motif which has two H-bond acceptors 4.6 Å apart or three
H-bond acceptors 2.5 Å apart (14). These guidelines are in agreement with the
observed chemical properties of marketed CNS therapeutics and properties for
passive diffusion into the brain (see Table 1).

As stated above, most compounds cross the BBB by passive diffusion through
the lipid membrane. Unlike for active transport, the physiochemical properties
for passive diffusion have been characterized and guidelines for successful
CNS clinical candidates have been defined. As expected, these rules are more
stringent than for peripheral indications. Lipinski modified his rule of 5 for CNS
indications (see Table 1) by effectively lowering the number of hydrogen bonds
(HBD < 3, HBA < 7) and the molecular weight (< 400) (15). A similar set of
rules was reported by Pajouhesh (16) which includes a polar surface area cut-off
of less than 60Å2, less than eight rotatable bonds and a non-acidic pKa range.
Many CNS drugs are basic and exist in equilibrium between their charged and
neutral states at physiological conditions or are amphiphilic if they also possess
an acidic group. A positive charge at pH 7-8, in particular a tertiary nitrogen,
shows a relatively high degree of brain penetration while strong bases and acids,
in particular carboxylates, do not (17). These observations are in agreement with
the parameters described for minimization of Pgp efflux. Furthermore, because
the plasma membrane of the brain is largely composed of negatively charged
head groups, weakly positively charged compounds are thought to interact
favorably, thereby increasing the local concentration at the membrane surface
and promoting passive diffusion. Approximately 75% of the most prescribed
CNS drugs are basic, 19% are neutral and 6% are acidic (18) Polar surface area
is also a well accepted parameter for predicting brain penetration and is generally
lower for CNS drugs than for other indications (11). Leesen (19) analyzed this
by comparing the % PSA for CNS drugs versus all drugs launched post-1983.
Leesen found that % PSA (polar surface area/total surface area) is significantly
lower for CNS drugs than for all marketed drugs (16 versus 21%). Clark and
Lobell also report an additional parameter accounting for ClogP and number of
hydrogen bond acceptors: ClogP-(N+O) > 0.

An increased understanding of the physiochemical requirements for brain
penetrable compounds provides a unique opportunity in the field of drug discovery
both in designing screening libraries and in the lead optimization phase. A
defining characteristic for CNS penetrable and Pgp pump resistant compounds is
low molecular weight (< 400) indicating that the molecular weight of screening
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compounds should be even less. One may estimate this starting point because it
has been shown that lead optimization adds approximately 100 Daltons to the
initial hit (23) yielding an upper cut-off of 300 for a CNS screening library. If one
uses the average molecular weight of marketed CNS drugs (310), then the desired
starting point is even lower at ~200. Screening low-molecular weight scaffolds
(<200-300 MW) is a relatively new area of drug discovery termed fragment-based
lead discovery (FBLD). Below we discuss the basic principles of FBLD and how
it the method may be optimized for CNS drug discovery.

Table 1. Summary of chemical properties of CNS drugs

Pgp Efflux (13) Passive DiffusionProperties
of

Marketed
CNS Drugs

(19)

Pgp - Pgp + Lipinski
(20)
(CNS)

Pajouhesh
(16)

Clark/
Lobell
(21, 22)

Molecular
Weight 310 < 400 > 400 < 400 < 450 < 450

clogP 2.5 NR NR < 5 < 5 1-3

H-bond
donors 1.5 NR NR < 3 < 3 NR

H-bond
acceptors
(N+O)

2.1 ≤ 4 ≥ 8 < 7 < 7 < 6

Rotatable
Bonds 4.7 NR NR NR < 8 NR

Polar Surface
Area
(PSA, Å3)

NR NR NR NR < 60-70 < 60-70

% Polar
Surface Area 16 NR NR NR NR NR

pKa NR Basic
< 8

Acidic
> 4 NR NR NR

Fragment-Based Lead Discovery

FBLDwas reported nearly 15 years ago (24–26) and has evolved significantly
resulting in multiple clinical candidates over the past 10 years (27, 28). It is now
viewed as a solid alternative to high-throughput screening (HTS) and has become
increasingly popular in recent years (27). One of the primary advantages of FBLD
for CNS drug discovery is that unlike HTS, early leads and hits tend to be lower
molecular weight. Furthermore, as these small fragments are optimized, one may
closely track and monitor the physical properties of future compounds to keep
them within the acceptable parameters for a CNS therapeutic agent.
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Other practical advantages are that because of the lower molecular weight
of fragments, fragment chemical space is smaller and therefore easier to sample
than all of drug-like space (107 versus 1060molecules (29) (20)). This in principle
gives one access to a more diverse set of starting points than from an HTS screen.
Additionally, Hann (30) showed that simpler molecules are more likely to bind
productively to a target than more complex molecules. As a result, libraries
composed of low molecular weight fragments need not be large to yield hits.
A related advantage is that fragments bind more efficiently on a per atom basis
than do HTS hits. The concept was described by Hopkins (31) who provided a
formula for ligand efficiency (LE) which is the free energy of binding divided by
the number of heavy atoms. Based upon Lipinski’s rules, this number is ideally
above 0.3 kcal/heavy atom. When viewed in total, one can devise a strategy
applying FBLD to CNS drug discovery.

Fragment-Based Screening: Practical Application to CNS Disease

To conduct a fragment screen in its simplest form, one must have a target,
a screening library and a method to screen it. The biological basis for target
choice is beyond the scope of this review, although from a technical point of
view, we tend to choose “druggable” protein classes which are tractable by x-ray
crystallography. Our goal is to modify the FBLDmethod to meet the unique needs
of CNS drug discovery. Our approach is described below with the general FBLD
process summarized in Figure 1.

Figure 1. Summary of fragment-based lead discovery method.

Library Design

General library design considerations include the chemical properties of the
compounds, the number of compounds in the library and the library’s chemical
diversity. These three parameters influence each other. For example, more
stringent chemical properties filters will lower the number of compounds needed
to cover chemical space. On the other hand, libraries with more liberal or fewer
property filters yield larger libraries and may require higher-throughput screening
methods. Most libraries will yield hits; the goal is to identify hits that may be
rapidly optimized to early leads and eventually clinical candidates. We have
designed our library with a bias towards CNS indications.
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Most commercial and internally developed fragment libraries obey the rule
of three (RO3) (32) which states: MW ≤ 300; cLogP ≤ 3, hydrogen bond donors
≤ 3 and hydrogen bond acceptors ≤ 3. Because our current efforts are focused
on treating CNS disease, we have modified these rules to allow for the lower
average molecular weight observed for CNS drugs (Table 1). Recall that the
average molecular weight for marketed CNS products (33) is 310 which is nearly
100 Da lower than for marketed drugs in general. Hence, we believe that the
standard RO3 molecular weight cut-off of 300 is too high for a CNS fragment
library, especially when allowing for a ~100 Da increase in molecular weight
during lead optimization. To compensate for this, our fragment library has an
average molecular weight of 150 with a practical upper limit of about 225. In
addition to the RO3, we impose a polar surface area restriction of < 60 Å2 which
limits the overall hydrophilicity of our compounds. We also impose general filters
to remove reactive and known problem compounds from our library.

How many fragments adequately cover chemical space? In an attempt to
estimate fragment chemical space, Fink and Reymond (34) enumerated that
there are ~26 million possible fragments (limit to 11 heavy atoms: C, N, O and
S). These compounds included 1028 ring systems with about half existing (or
previously existing) as chemically synthesized or a natural product. Of the 26
million theoretical compounds, about half (13 million) meet the rule of three (27)
but only ~26 thousand are commercially available. Of these 26 thousand, many
are aliphatic and would not be included in a fragment library. About 70% of the
theoretical compounds are chiral and may be excluded from a screening library.
For example, we routinely exclude compounds with more than 2 chiral centers
unless the compound represents a unique core amenable to follow-on chemistry.
Another interesting observation from this study is that fragment space is biased
by compounds found in nature representing a “chemical evolution.” One might
imagine that it would be difficult to synthesize compounds that are very different
from those found in nature and to carry that thought further, one might imagine
that compounds that are evolved well beyond those found in nature are less
likely to bind to our naturally occurring drug targets. That will be a debate for
computational chemists of future generations.

Another approach for estimating commercially available fragment library
size is to analyze available compounds and create a library based upon chemical
property filters and diversity. Zenobia has assembled a database of 2.6 million
commercially compounds. Of these, ~65,000 meet the rule of three but only
16,000 meet Zenobia’s more stringent cut-off for CNS screening. From here
reactive, aliphatic and known problem compounds are removed limiting the
library to ~5000 compounds.

For our libraries, we aim for maximum core diversity rather than overall
diversity of the library. This minimizes representatives from each core class,
even if that class is highly represented in the 5000 compound starting set. To
accomplish this, compounds are clustered and library members hand-picked to
represent core classes. Cores are biased slightly towards those found in marketed
drugs. The cores in our library are also biased based on the number of commercial
analogues available to facilitate rapid follow-up of hits through SARbyCatalogue.
We generally follow a fragment screen by a fragment-hopping exercise where
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additional scaffolds that maintain key interactions with the protein are purchased
and tested. This increases the diversity of our starting points for synthesis (see
below).

The general properties of Zenobia’s fragment library are summarized below:

• MW: Avg ~155; upper limit 225
• cLogP: 1-3
• Hydrogen bond donors: ≤ 3
• Hydrogen bond acceptors: ≤ 3
• Polar surface area: <60 Å2

• Primarily single ring aromatic

o Includes fused ring
o Some saturated or linked aromatic

• Compounds with more than two chiral centers are removed
• Reactive groups/problem compounds are removed
• Chemically accessible functionality
• Solubility at ~200mM in DMSO experimentally verified
• ~1000 compounds, > 60 cores

Screening Methods

For low molecular weight fragments, the primary screening method has
been limited in those that to detect hits with low binding affinity (< 1-5mM for
a fragment of 150 MW with LE > 0.3). Today, common methods include SPR
(35), nuclear magnetic resonance (NMR) (24) and x-ray crystallography (26).
Calorimetry is also a rapidly emerging method as higher throughput instruments
are being developed with lower protein requirements including isothermal
titration calorimetry and enthalpy arrays (36). Fluorometric detection of thermal
melting shifts is also emerging as a method based upon the premise that ligand
binding stabilizes the target to denaturation (37). With so many potential methods,
how does one choose the optimal approach? Typically, we utilize orthogonal
techniques where a binding method such as SPR, calorimetry or NMR is used for
the primary screen and coupled with x-ray crystallography as a secondary screen.
This approach provides both binding energy and detailed structural information
for our fragment hits. In addition to binding methods, activity based methods
such as biochemical screens may also be used for protein classes where fragments
bind more potently than usual (e.g. kinases). At Zenobia, the primary screen
varies by protein class and project. However, in all cases, either at the fragment
screening or fragment optimization stage, biochemical assays are employed to
confirm the functional significance of the hits or analogues.
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Fragment Hopping

Because we generate co-crystal structures for our fragment hits, common
binding patterns such as hydrogen bonding motifs, electrostatic interactions or
important van der Waals contacts begin to emerge as the hits are analyzed in total.
These motifs facilitate definition of pharmacaphore models that can be used to
rapidly mine commercial (or virtual) chemical space for additional fragment hits
(fragment hopping). A practical consequence of this process is that by screening
a small library of diverse chemotypes to coarsely sample chemical space, we
can define the chemical space of our targets binding site that can be used in
identifying additional fragments and in fragment optimization. Hence, since
each hit represents a binding motif or chemotype and not necessarily a single
compound, we are able to employ simple computational methods to expand the
SAR efficiently. Fragment hopping may be used to find additional fragment
hits with improved potency, chemical properties or to facilitate rapid synthetic
optimization as discussed below.

Fragment Optimization: Options and Approaches

Fragment Optimization

During the fragment screening phase, the goal is to identify a collection of
diverse fragment hits so that the best 3-5 can be taken forward into fragment
optimization. There are a number of common methods for optimizing fragments
into lead compounds (27). These include fragment growing, fragment merging
and fragment linking as depicted in Figure 2. Which is the best method? We have
found that there are multiple paths to a lead compound even through fragment
screening and that the path taken is in part driven by the data and resources at
hand. The aim is to arrive at the final compound as efficiently as possible and in
the fewest number of steps.

Fragment merging can be useful early and late in a drug discovery program.
It typically occurs when the structural information from multiple fragment hits are
merged or a fragment hit is merged with an existing chemical series. The latter
is a particularly powerful application of fragment-based optimization because
it can rapidly advance an existing program into new chemical or intellectual
property space. An example of fragment merging was first published by Nienaber
(38) for the target, urokinase. Here, the first crystallographic fragment screen
was conducted to identify a core to replace a napthamidine of the existing lead
series. This napthamidine series had no oral absorption most likely due to its
high basicity. The fragment screen identified a hit with a lower pKa that bound
about 10-fold weaker than the napthamidine core (Figure 2A). Crystal structures
were completed for the quinoline and the substituted napthamidine, and the two
series were merged by attaching the amino-pyrimidine of the naphthamidine to
the quinoline core (Figure 2A). Fragment merging resulted in a 100-fold increase
in potency as was observed with the napthamidine series for a potency of 370 nM
and a ligand efficiency of 0.41. The new fragment-merged compound had an oral
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bioavailability of 38%. This provided a new low molecular weight starting point
for lead optimization.

Figure 2. Examples of common fragment optimization approaches, including A.
fragment merging (26); B. Fragment linking (24), and C. Fragment growing (38).

Fragment-linking also utilizes information from multiple fragment hits or
existing SAR. This was the first application of FBLD published by Shucker et
al., (24) using NMR as a screening method. Although in this early paper, the
fragments are larger than those screened in our embodiment of the method,
the success of fragment linking is clearly demonstrated. Here, fragment hits
binding to FKBP with potencies of 2 µM and 100 µM were identified by NMR
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screening and their NMR structures determined. The fragments were linked and
lead compounds ranging from 19 nM to 228 nM identified. While fragment
linking was one of the first fragment optimization methods implemented, it has
not been used widely in the community. This is in part because of the difficulty
in identifying fragments that occupy two sites simultaneously and the geometric
challenges in linking them through medicinal chemistry. For CNS disease, if
fragments are not bound very close in the binding site, linking may not be feasible
in meeting the physicochemical requirements of brain penetration.

Fragment growing is one of the most popular methods for fragment
optimization. In this method, one only requires a fragment hit and ideally a crystal
structure of the hit bound to the target. By examining the binding mode of the
fragment to the target, a site for chemical modification and growth into adjacent
areas of the active site can be identified. An early example of fragment growing
was published by Sanders et al., (38) for the target dihydroneopterin aldolase
(DHNA). As show in Figure 2C, an initial fragment hit was identified with a Kd
of 28µM and modified through a fragment hopping and growing approach to a
new starting point with an IC50 of 1.5µM. This new starting point was chosen
because it maintained potency and provided a handle for chemistry that was
directed towards a binding groove on the protein. A small structure focused
library was prepared to probe this site and a new hit identified with a potency
of 68nM. When using crystal structures as a guide, fragment growing can be a
very efficient method of fragment optimization to gain potency while keeping the
chemical properties and molecular weight within an acceptable range.

The normal consequence of lead optimization is that molecular weight
and lipophilicity increases while LE decreases (15, 39). However, because of
the stringent requirements for brain penetration, we closely monitor chemical
properties throughout the fragment to lead and lead optimization process to keep
them within the guidelines for CNS drugs. The goal of each design cycle is to
increase potency with minimal increase in molecular weight. Ideally, each atom
contributes to potency and is explored and optimized. From a practical point of
view, this is not always possible due to the shape and characteristics of the target
of interest but remains a goal during the process. General goals during fragment
and lead optimization are summarized below:

• Keep MW low and ligand efficiency high
• Keep hydrogen bonds low, in particular h-bond donors

o Add intramolecular H-bonds
o Remove carboxylic acids
o Aim for weakly basic pKa

• Reduce Pgp efflux and maximize passive diffusion by monitoring
chemical properties throughout the screening and optimization cycle

• Increase lipophilicity while maintaining adequate solubility
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Compounds that meet these criteria are not guaranteed to be a drug (e.g.
stable, efficacious, non-toxic or even cross the BBB). However, as discussed
above, compounds that don’t meet these criteria do seem to have a higher
probability of failing in the clinic making the criteria a guidepost in our drug
discovery programs. Furthermore, it can focus efforts as non-drug-like properties
are engineered out of the molecule.

Conclusions

As the 78 million baby-boomers (born 1946-1964) in the US age, incidence
of neurodegenerative CNS disease is expected to double by 2050 (40). Hence,
the need for drugs that treat these diseases is only expected to grow. Currently,
there is no effective treatment for the most prevalent of these diseases, AD and
no effective long-term treatment for PD. In fact, drugs currently on the market for
CNS disease treatment including various psychiatric diseases alleviate symptoms,
in some cases quite effectively, but do not halt or stop progression of the disease.
There is a critical need for these disease modifying therapies.

Target-based therapies have eluded CNS disease in part because of the
complicated biology and potential that each disease may have sub-variants
requiring specialized therapies for different patient populations. Phenotypic
screening is a proven method for identifying marketed CNS therapeutics
providing symptomatic relief. However, identification of disease modifying
therapies by this method has also proven challenging. This is again most likely
due to the complicated biology and in many cases a lack of understanding of the
mechanism of action for these compounds. Hence, to provide neuroprotective or
disease altering therapies, targeted approaches perhaps in conjunction with the
historically more common in vivo phenotypic screening may provide the best
options for success.

For both phenotypic and target-based therapies, the chemical properties
of compounds must be closely monitored, more closely than for other targeted
therapies because these compounds must cross the blood brain barrier. One
important property is the molecular weight of the compound which ideally should
be below 400. Other chemical properties are summarized in Table 1. Because
the properties of the final therapeutic candidate are important for success in the
clinic, the properties of the starting compounds and screening libraries should be
considered.

Here, we summarize one method for discovery of targeted CNS therapeutics,
fragment-based lead discovery. This method starts with very lowmolecular weight
fragments of drugs and then optimizes them, ideally with the use of structural
information either through experimental methods (NMR, x-ray crystallography)
or computational modeling. A number of biophysical methods have evolved for
primary screening and the first clinical candidate for CNS disease derived from
fragment-based lead discovery has been reported for the AD target BACE (41).
As CNS biology is becoming better understood and drug targets identified, other
focused targeted efforts using fragment-based lead discovery may provide a basis
for a new discovery paradigm in CNS disease.
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Dengue virus, 144
De-solvation term, 117
DF. See Data fusion (DF)
2D fingerprint methods, 2
DHNA. See Dihydroneopterin aldolase
(DHNA)

Dihydroneopterin aldolase (DHNA), 188
Direct acyclic graph (DAG), 59

Disallowed angles, 157
Diversity-oriented synthesis (DOS)
products, 152

DOS. See Diversity-oriented synthesis
(DOS) products

Drug fragment set, 48
Drug-like compounds
bioactive scaffolds, 169f
histogram, 170f
percentage of compounds scored, 168t
two step screen, 167f

Drug-like ligands, 93
Drug-likeness, 2
2D Tanimoto similarity searches, 6

E

ECFC. See Extended-connectivity counts
(ECFC)

ECFP_6 fingerprints, 64
eHiTS. See electronic High Throughput
Screening (eHiTS)

eHiTS docking engine, 91
eHiTS flexible ligand docking software, 91
electronic High Throughput Screening
(eHiTS), 92
chemical feature graph, 96
docktable extension, 101
geometric shape, 96
pose and conformational sampling
requirements, 93

pose generation algorithm, 95, 96f
results, 124
scoring function, 109

Empirical scoring, 108
Enrichment results, 125, 125f
surflex data set, 126f

EphB4, 140
application of the anchor-based library
tailoring approach, 142t

homology model, 142f
Experimental binding energy, correlation,
126, 126t
eHiTS-score with experimental binding
data, 127f

Extended-connectivity counts (ECFC), 65

F

Family coverage term, 119
Fast Flexible Ligand Docking (FFLD), 139
FBLD. See Fragment-based lead discovery
(FBLD)
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FC-Bioisostere software, 74
FCFC. See Functional class
extended-connectivity counts (FCFC)

Feature nodes, 63
Feature-graph representation
cavity, 97
ligand, 98, 99f

FFLD. See Fast Flexible Ligand Docking
(FFLD)

Flexible chain fitting, 104
minimization process, 105

Flexible ligand docking, 92
FlexNovo, 10
FOG. See Fragment Optimized Growth
(FOG)

Forma collection, 159
Förster-resonance energy transfer (FRET),
141

Fragment
anchors, 137
approaches, 3
commercial vendors, 50
complexes, 2
computational screening, 2
"cut and fit" approach, 7
defined, 2, 131
designing and searching libraries, 4
hopping, 186
library parameters, 46
linking, 187
Markov chain approach, 12
optimization, 186, 187f
relative probability, 165f
silico screening methods, 3

Fragment-based docking, 135
Fragment-based drug design
computational screening: docking, 8
difficult targets, 3
discovery, 3
examples, 12
growing and linking, 10
libraries, 4
overview, 1
privileged structure, 3
protocol, 72

Fragment-based high-throughput docking
overview, 131

Fragment-based lead discovery (FBLD),
45, 182
CNS disease, 183
development, 45
fragment hopping, 186
library design, 183
methods, 185
project, 47
summary, 183f

Fragment docking problem, 92
Fragment hits, structure-based exploitation,
53

Fragment Optimized Growth (FOG), 12,
151
algorithm, 151
algorithm during growth, 155f
discussion, 171
illustration, 156f

Fragments of life, 48
FRET. See Förster-resonance energy
transfer (FRET)

FT algorithm, 8
FTMAP method, 8
FTrees-FS software, 4
Functional class extended-connectivity
counts (FCFC), 65

Functional group merging, 132
Fused benzene rings, 164

G

GANDI, 9
Gaussian probability distribution curve,
112

Geminal diol, 157
GPCR crystal structures, 13
Grid cells, 97
GroupBuild, 10
GrowMol, 11
GSCF graph, 97
GSK3β protein-ligand structures, 54

H

HAC. See Heavy atom count (HAC)
Hash code, 38
H-bond donor, 82
HD. See Huntington’s disease (HD)
Heat Shock Protein 90 (HSP90), 74
Heavy atom count (HAC), 76
High ligand efficiency, 2
High throughput screening (HTS), 1, 46,
182
experimental methods, 2
hit rates, 1
screen library, 1

HSP90. See Heat Shock Protein 90
(HSP90)

HSP90 inhibitor, 3, 49
HSP90 ligands, 82
HSP proteins, 79
HTS. SeeHigh throughput screening (HTS)
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Huntington’s disease (HD), 180
Hybridization, 73
Hybrids: scoring and ranking, 85
Hydrogen bond
geometry, 111
pyrrole rotation, 138f

Hyper-graph, 103f, 104
clique, 105

Hypothetical fragment hits, 49

I

Inference
defined, 62
network, 61

In silico fragment-based generation
de novo methods, 152
discussion, 171
growth, 154
methods, 153
overview, 151

Initial fragment definition, 132
Interacting surface points (ISP), 109, 117
eHiTS scoring function, 110t

ISP. See Interacting surface points (ISP)

J

Join atoms, 96

K

Kearsley’s superimposition algorithm, 77
Kinase CNS targets, 54
Knowledge base, reproducing reactions, 34

L

LE. See Ligand efficiency (LE)
LeadModel3D, 6
Lennard-Jones 6-12 potential, 118
Library optimizer using Feature Trees
(LoFT), 5

Ligand-based drug design, 73
Ligand-based virtual screening
experiment, 64
overview, 57
results and discussion, 66
searching chemical databases, 58

similarity inference network model, 59
Ligand efficiency (LE), 4, 45
Ligand entropy term, 121
Ligand Expo dictionary, 75
Ligand intra-molecular interactions, 121
Ligand strain energy term, 120
Lipinski
cutoffs, 164
rule-of-five (Ro5), 50
screen, 158

LoFT. See Library optimizer using Feature
Trees (LoFT)

M

Manual decomposition, 134
Markov chain, 151, 153
bioactives used, 160f
de novo grown compounds, 163f
FOG using, 161f
ring/non-ring transition probability, 163f
transition probability matrix, 160f

MAX fusion rules, 66
Maxwell-Boltzmann exponential
distribution, 116

MCSS method, 8
MDDR. See MDL drug data report
(MDDR)

MDDR database, 57
MDL drug data report (MDDR), 58
structure activity classes, 65t

MEDP-fragmentor software, 85
MED-Portions, 6, 13, 85
MED-SuMo, 6
algorithm, 75
parameters, 75
software, 72

MERGE, 5
3mer screen, 157
user defined disallowed, 157

Michael J. Fox Foundation, 180
Minimum Tanimoto dissimilarity D(min)
separation algorithm, 158

Molecular inference network model, 60f
MSCS. See Multiple solvent crystal
structures (MSCS)

Multiple solvent crystal structures (MSCS),
8

N

National Cancer Institute (NCI), 61
Natural Product (NP), 152, 159

202

D
ow

nl
oa

de
d 

by
 8

9.
16

3.
35

.4
2 

on
 J

un
e 

1,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e 
(W

eb
):

 S
ep

te
m

be
r 

30
, 2

01
1 

| d
oi

: 1
0.

10
21

/b
k-

20
11

-1
07

6.
ix

00
2

In Library Design, Search Methods, and Applications of Fragment-Based Drug Design; Bienstock, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 2011. 



NCI. See National Cancer Institute (NCI)
N-dimensional space, 94
NNRTI. See Non-nucleoside reverse
transcriptase inhibitors (NNRTI)

Non-nucleoside reverse transcriptase
inhibitors (NNRTI), 79

NP. See Natural Product (NP)
NS3 protease, 144
Nucleoside 2-Deoxyribosyltransferase, 48

O

Organic reactions, success rates in
reproducing different types, 36t

Overlaid ligands, 76

P

Parkinson disease target, 13
PASS method, 7
PDB. See Protein Data Bank (PDB)
P-glycoprotein (P-gp), 180
P-gp. See P-glycoprotein (P-gp)
Pharmacophore models, 2
Phenylurea anchor, 143
Phosphodiesterase 4, 3
PLP intermolecular term, 85
Pocket depth term, 119
Polyhedra
2D cartoon demonstrating generation of
cavity, 97f

vector lengths, 99
Polyhedron, 97
Pose matching, 102
Powell local minimizer, 116
Probabilities estimation, 63
activity-need node, 64
feature nodes, 63
query nodes, 63

Probabilities using link matrices, 62
Project-purposed screening libraries, 51
Protein crystallography
concept, 46
overview, 45

Protein Data Bank (PDB), 71, 93
bioisosteric approach, 72
2D depiction, 81f
superposition of HSP90 ligand, 83f
target-based alignment, 73

Protein family recognition and clustering,
122
weight parameters, 122

Protein kinase, 72

scaffolds, 86
Protonation handling, 106
functional groups A,B,C and D, 107f
ligand with multiple functional groups,
107f

Pseudo docking, 6
Pubchem compounds, 82

Q

QSAR models, 31
QSearch, 7
Query fragment, 76, 77
Query ligands, 76
Query network, 59, 60
Query nodes, 63

R

Reaction generation algorithm
step 1, 34f
step 2, 34f

Reaction vectors, 31
Beckmann rearrangement reaction, 33f
combination of atom-pairs, 32
overview, 31

RECAP method, 4
ReCore, 11
Replacement count, 77
Replacement fragment, 77
Replacement fragment selection, 77
Resorcinol, 50
Rigid fragment docking, 99
Rigid fragments and flexible chains, 97f
RMSD metric space, 101
RMSD-success rate curve, 124f
RNA polymerase, 82
Route Designer method, 30
Rule-of-three (Ro3), 50

S

Scaffold compounds, 54
Scaffold hoping, 11
SCF. See Surface Chemical Features (SCF)
SciFinder, 6
SciTegic, 64
Scoring function
additional terms, 117
docking programs, 108

Screening compounds, 52
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SDsearch software, 51
SEAL score, 76
Search space size, 94
SEED. See Solvation Energy for Exhaustive
Docking (SEED)

SeeDs. See Structural Exploitation of
Experimental Drug Startpoints (SeeDs)

Separation algorithms, evaluation, 164t
Similarity inference network model, 59
SMARTS patterns, 10
SMILES string, 51, 155
Soak protein crystals, 47
Solvation Energy for Exhaustive Docking
(SEED), 132, 137
ligand triangle, 139

SPLICE method, 11
SPR. See Surface plasmon resonance (SPR)
SPROUT, 10
SQL database, 101
STAR technology, 12
Statistical data
collection, 112
fitting empirical functions, 116

Steric clash penalty term, 118
Structural Exploitation of Experimental
Drug Startpoints (SeeDs), 5

Structure generation algorithm, 32
Sufficient sampling, defined, 93
SUM fusion rules, 66
Surface Chemical Features (SCF), 73, 84
Surface plasmon resonance (SPR), 2
Surflex data set, 125
enrichment results, 126f

T

TAN. See Tanimoto-based similarity
searching system (TAN)

Tandem reaction, 41f
Tanimoto-based similarity searching
system (TAN), 65

Target-based drug design
hybrids: scoring and ranking, 85
library design, 86
method, 85
overview, 84

Thrombin, 3
TopClass, 152

classification algorithm, 157
Transition probabilities, calculations, 153
Trypanosoma brucei, 48
Two-way attachment recombination, 78

U

Urokinase, 3

V

Validation procedure, 37f
Van der Waals
surface, 109
term, 118

Various stochastic search methods, 92
Veber oral bioavailability screen, 158
VEGFR2 protein kinase, 86

W

Weighted-sum link matrix, 63
Weighting scheme, 62
West Nile virus, 144
WOMBAT. See World Of Molecular
Bioactivity (WOMBAT) databases

World Of Molecular Bioactivity
(WOMBAT) databases, 58

X

X-ray crystallography, 8
data, 118

X-ray resolution, 76

Z

Zenobia Therapeutics, 6, 48
fragment library, properties, 185

ZINC molecule, 134
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